
Imaging techniques are a key tool in the diagnosis of dis-
ease. X-rays, ultrasound, CAT, and PET scans are now rou-
tinely used as a preliminary step to determine the extent

of a disease and the need for and type of treatment (Tearney
et al. 2006). These techniques generate vast quantities of
data. The images that are produced must typically be ana-
lyzed by trained clinicians. This is extremely labor intensive,
expensive, and can be prone to error. Thus, there is a need
for, and an opportunity to, improve the quality of health-
care systems by developing automated aids to assist in this
process. Given the patient-critical outcomes of the image-
analysis process, a human analyst must always remain in the
loop. However, it may be possible to reduce the labor
involved, and thereby the costs to the patient, using such sys-
tems. Further, a well-designed system may also reduce errors,
potentially saving lives.

There are rarely well-defined, crisp guidelines that can be
used, for example, to separate healthy tissue from diseased.
Therefore, such image analysis tasks are often formulated as
machine-learning problems. Here, a collection of images
annotated by experts is used as data to train a classifier, which
is then used to help annotate a new image. Typically, this sys-
tem will present a rank-ordered list of image regions to the
human analyst for verification or correction.

In our work, we focus on image analysis for coronary artery
disease (CAD). This is a leading cause of death worldwide. An
estimated 17.5 million people died from a cardiovascular dis-
ease in 2012, representing 31 percent of all global deaths. Of
these deaths, an estimated 7.4 million were due to coronary
heart disease and 6.7 million were due to stroke (Mendis, Pus-
ka, and Norrving 2011). Although this is such a common dis-
ease, the underlying causes are quite complex, and it is only
recently that an imaging technique that can help identify the
disease mechanism clearly has been developed. This tech-
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n An estimated 17.5 million people
died from a cardiovascular disease in
2012, representing 31 percent of all
global deaths. Most acute coronary
events result from rupture of the protec-
tive fibrous cap overlying an atheroscle-
rotic plaque. The task of early identifi-
cation of plaque types that can
potentially rupture is, therefore, of great
importance. The state-of-the-art
approach to imaging blood vessels is
intravascular optical coherence tomog-
raphy (IVOCT). However, currently, this
is an offline approach where the images
are first collected and then manually
analyzed an image at a time to identify
regions at risk of thrombosis. This
process is extremely laborious, time con-
suming, and prone to human error. We
are building a system that, when com-
plete, will provide interactive three-
dimensional visualization of a blood
vessel as an IVOCT is in progress. The
visualization will highlight different
plaque types and enable quick identifi-
cation of regions at risk. In this article,
we describe our approach, focusing on
machine-learning methods that are a
key enabling technology. Our empirical
results using real OCT data show that
our approach can identify different
plaque types efficiently with high accu-
racy across multiple patients.



nique is called intravascular optical coherence
tomography (IVOCT). In the following sections, we
describe in detail CAD, the prior state of the art in
imaging for CAD, and the IVOCT technique. 

Like many other imaging techniques, a major issue
with IVOCT is that it can produce more than 500
images in a single scan, resulting in an explosion of
image data. This can be difficult and labor intensive
to analyze manually, taking up to one hour of exam-
ination for each image by a trained analyst, of which
there are not many, given the recency of the tech-
nique (Lu et al. 2012). This often precludes measure-
ments from every frame, and plaque classification is
not done because it is infeasible in terms of time. Fur-
ther, this manual process is also prone to error. In pri-
or work (Lu et al. 2012), our group has found evi-
dence of up to 5 percent intra- and 6 percent
inter-rater variability among analysts looking at these
images. 

The goal of our work is to enable an effective detec-
tion and diagnosis of CAD, which is a necessary pre-
cursor for effective treatment. We aim to build a tool
to do this in three ways: (1) reduce the effort
involved, (2) improve the accuracy of disease mech-
anism identification, and (3) make the diagnosis
available as early in the process as possible. The
prevalence of CAD means achieving these goals can
have a major impact on health worldwide. 

We anticipate fulfilling our goals in two steps. In
the first step, reported in this article, we develop an
automated method to process a single image gener-
ated by IVOCT scans. We demonstrate that it is accu-
rate and efficient on real IVOCT data and that ana-
lysts can use the output to greatly reduce their
annotation effort. In the second step, our goal is to
integrate this approach into a real-time visualization
that accompanies an IVOCT scan. These images will
be annotated with different detected plaque types
and will be used for rapid identification of high-risk
regions for intervention, management and guidance.

Cardiovascular Artery Disease (CAD)
In this section, we discuss CAD and the state of the
art in its diagnosis and treatment.

The underlying disease process in the blood vessels
that results in coronary heart disease (heart attack) is
known as atherosclerosis. For many years, it was
thought that the main cause of a heart attack was the
buildup of fatty plaque within an artery leading to
the heart. With time, the plaque buildup would nar-
row the artery so much that the artery would either
close off or become clogged by a blood clot (steno-
sis). The lack of oxygen-rich blood to the heart would
then lead to a heart attack. However, these types of
blockages cause only about 3 out of 10 heart attacks
(Virmani et al. 2000). 

Researchers are now finding that many people
who have heart attacks do not have arteries severely

narrowed by plaque (Falk 1983). In fact, vulnerable
plaque may be buried inside the artery wall and may
not always bulge out and block the blood flow
through the artery. This is why researchers began to
look for, potentially, a different cause. What they
found was that a thin protective fibrous cap (FC)
overlying an atherosclerotic plaque (lipid pool) may
rupture, triggering the formation of a blood clot,
which may eventually lead to an acute event such as
heart attack. 

Current state-of-the-art treatment of the disease
focuses on blood vessel narrowing by means of per-
cutaneous interventions (PCIs). PCI is a procedure
that uses a catheter (a thin flexible tube) to place a
“stent” to open up blood vessels in the heart that
have been narrowed by plaque buildup (stenosis). A
stent is a flexible tube that reinforces the blood ves-
sel wall. This needs significant imaging support to
determine how, where, or even if it should be done.
For example, the presence of significant calcification
in the vessel may prevent the stent from being
placed or from functioning as intended, triggering
additional procedures to remove the calcium or
aborting the procedure. On the other hand, if there
is a lipid pool that may rupture, a physician can
extend a stent to seal off the affected area or at least
avoid placing the stent edge in a lipid region, an
occurrence that raises the risk of a tear or damage to
the inner wall or lining of an artery. These examples
highlight the need for a reliable imaging technique
with suitable resolution to identify plaque at high
resolution (for example, thickness of vulnerable
fibrous cap <<65 μm).

The current standard intravascular imaging modal-
ity is intravascular ultrasound (IVUS). IVUS is a med-
ical imaging methodology that uses a catheter with a
miniaturized ultrasound probe attached to the distal
end of the catheter. The proximal end of the catheter
is attached to an ultrasound device. The IVUS
machine produces a detailed cross-sectional image of
the vessel wall and plaque as a gray level intensity
image. An example of the IVUS two-dimensional
(2D) cross-sectional image is shown in figure 1,
which shows the plaque and vessel wall from which
the ultrasound wave bounces off.

When analyzing the 2D image generated by the
IVUS machine, it is possible to quantify, limited to
the IVUS resolution, the lipid plaque and the fibrous
plaque. However, quantification of the total amount
of vessel calcification by IVUS is problematic in that
its resolution is low and it cannot measure the dis-
tance between the superficial calcium and the vessel
boundary, nor can it assess the thickness of calcium
(Mintz et al. 1995). 

Intravascular Optical Coherence
Tomography (IVOCT)

In this section, we introduce IVOCT and describe its
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advantages relative to IVUS. Intravascular optical
coherence tomography uses the same concept of
imaging, only it uses light instead of ultrasound
waves. The underlying concept of OCT is similar to
that of ultrasound; by measuring the delay time of
optical echoes reflected or back scattered from sub-
surface structures in tissues, we can obtain structural
information as a function of depth within the tissue
(Tearney et al. 2012). 

In IVOCT, we obtain cross-sectional images by
inserting a flexible imaging probe (catheter) into the
blood vessel to be imaged. The catheter has an opti-
cal fiber coupled to a lens and microprism. The
microprism reflects the OCT beam perpendicular to

the catheter’s longitudinal direction and captures the
light that is back scattered from that tissue (the
reflected beam is referred to as an A-Line, figure 2a).
The probe is then rotated and pulled back. This pull-
back creates a two-dimensional image (referred to as
polar or r-θ image) by assembling successive A-lines
next to each other resulting in an image shown in fig-
ure 2b. This image is then transformed to Cartesian
coordinates to produce the image shown in figure 2c.
A typical pullback contains 271 images covering 54
mm and an image contains 504 A-lines.

Different tissues have different qualities that influ-
ence the back reflectance. The longer the distance
traveled, the longer the delay in returning to a detec-

Figure 1. Intravascular Ultrasound Image. 
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tor. The delay in the returning light from deeper
structures compared with shallow structures is used
to reconstruct images.

Since its approval for clinical use, IVOCT has
become an invaluable tool for vascular assessments
due to its high contrast and microscopic resolution
(5–15 μm), which is superior to other in vivo imaging
modalities such as IVUS. To exemplify the difference
in the output of IVUS and IVOCT, we show in figure
3 what a calcified cross section might look like using
both modalities.

A key advantage of IVOCT over IVUS is that it is
able to distinguish key types of plaque (Yabushita et
al. 2002) and aid in assessment of new coronary
artery stent design (Lu et al. 2012, Wang 2012).  This
is important because the presence of calcium is the
strongest factor affecting “stent expansion,” a well-
documented metric for clinical outcome (Fujimoto,
Nakamura, and Yokoi 2012; Nishida et al. 2013).
IVOCT provides the location, circumferential extent,
and thickness of calcium. Second, there can be a geo-
graphic miss, where the stent either misses the lesion
along its length or is improperly expanded, affecting
its ability to stabilize the lesion and/or provide appro-
priate drug dosage. This has a well-documented
impact on recurrence of narrowing (Costa et al.
2008). Plaque dissections at the edge of a stent (when
a stent’s length does not fully cover the plaque along
the vessel) clearly visible in IVOCT were detected by
angiography in only 16 percent of cases (Chamie et
al. 2013). Edge dissection (that is, when the edge of
the stent lies on top of a plaque) happens almost
exclusively in areas where the calcium/lipid plaque is
not evenly distributed around the lumen circumfer-
ence (Chamie et al. 2013), characteristics only avail-
able with intravascular imaging. Under IVOCT guid-
ance, one can use a longer stent or apply a second
stent to reduce effects of this geographic miss. Third,
plaque sealing is the treatment of a lesion that may
appear vulnerable and may rupture, under intravas-
cular imaging. Because approximately 50 percent of
coronary events after stenting happen at these
remote, nonstented sites, plaque sealing is an attrac-
tive concept under investigation in trials. IVOCT’s
high sensitivity for lipid plaque will be advantageous
for guidance of plaque sealing.

For the reasons mentioned, we focus on analyzing
IVOCT images for CAD. Next, we describe how we
represent these images in order to train a classifier
from them, followed by a detailed experimental eval-
uation. 

Representing an IVOCT Image
In order to build our system, we need to identify dif-
ferent plaque types in IVOCT images automatically
and accurately. In this section, we describe image
characteristics that are key to identifying different
plaque types. In constructing our features we use the
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Figure 2. Intravascular OCT Image Generation Process

a) Back-scattered intensity of a single A-line. (b) Polar (r-θ) image (the red
line is the A-line in a). (c) The polar image converted to the more human
readable x-y. 
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qualitative description of the different plaques’ char-
acteristics in prior work (Yabushita et al. 2002)
described below. This also provides the ability to
interpret results in a meaningful way.

A fibrous plaque (figure 4a) has high back scattering
and the region has relatively homogeneous intensity
values. We see that the average intensity is high
(bright). Likewise, the intensity is not attenuated
much along the A-line (Gargesha et al. 2015).

A lipid plaque (figure 4b) is a low-intensity region
with poorly delineated borders, a fast IVOCT signal
drop off, and little or no OCT signal back scattering,
within a lesion that is covered by a fibrous cap. We
see that the intensity starts very bright and decreases
quickly along the A-line (Gargesha et al. 2015). 

A calcified plaque (figure 4c) appears as a low inten-
sity or heterogeneous region with a sharply delineat-
ed border (leading, trailing, and/or lateral edges). Cal-
cium is darker than fibrous plaque with greater
variation in intensity level.

Based on this description, we construct a set of
eight (real-valued) features for each pixel in the
image. We compute these features using a three-
dimensional (3D) neighborhood centered on the pix-
el of interest. The third dimension comes from neigh-
boring images (human analysts will often use
adjacent images when annotating an image). In these
features, σ represents the standard deviation of the
intensity values within a 3D neighborhood.

Distance to Lumen (Dl): This is a measure of the dis-
tance of the center pixel from the lumen border (that
is, the wall of the blood vessel). This feature helps
identify lipid plaques since they are typically within
a fibrous plaque.

Beam Penetration (Dd): This is a measure of the
length of the beam from the lumen border to the
back border (the border beyond which the near
infrared beam does not reach and the signal is at
baseline). It depends on tissue type, thus can distin-
guish between plaques. This feature is invariant for
pixels across an A-line but varies across A-lines.

Mean Intensity (I): This represents the average sig-
nal intensity of the different plaque types within the
3D neighborhood. As can be seen in figure 4, this is a
very distinctive feature.

Homogeneity (H): This is a local coefficient of varia-
tion, σ /I. It helps in distinguishing between hetero-
geneous intensity regions and homogeneous intensi-
ty regions.

Relative Smoothness of Intensity (S): This is defined as
S = 1 – 1/(1 + σ2). S is 0 for constant intensity regions
and it approaches 1 for large deviations in intensity
values. 

Entropy (E): Entropy is another measure of the vari-
ability of the signal intensity within the respective
plaque type regions. To compute it, we construct a
histogram of the intensity distribution within a 3D
neighborhood, convert it to a probability distribu-
tion, and then estimate its information content.

Similar features as these are often used in image-
processing applications (Gonzalez, Woods, and
Eddins 2009). The final two features we use are opti-
cal parameters. 

Attenuation Coefficient, μt — This feature measures
the rate at which the signal intensity drops off with-
in the tissue. Calcified plaque has lower attenuation,
and as a result, IVOCT can see deeper into these tis-
sues compared to lipid, where IVOCT does not see as
deeply. For this reason, the attenuation coefficient
(or penetration depth) gives useful information
about plaque types. 

Incident Intensity, I0 — This represents the back scat-
tering characteristics of the plaque at the point where
the light touches it. This feature is excellent at dis-
tinguishing fibrous plaques, which are very reflective.
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Figure 3. Calcific Coronary Plaques.

Imaged in vivo by optical coherence tomography (OCT) (A, C) and intravas-
cular ultrasound (IVUS) (B, D). (A) This OCT image shows a well delineated,
heterogeneous, signal-poor region corresponding to a macrocalcification (A,
arrow), also seen in the corresponding IVUS image (B, arrow). A signal-rich
fibrous band (A, two arrowheads) overlying the calcification is easily iden-
tified in the OCT image but is obscured by a saturation artifact in the IVUS
image. (C) A thin layer of circumferential calcification is seen in this OCT
image (arrows) as a well-defined, heterogeneous, signal-poor region within
the vessel wall. A side-branch (arrowhead) can be seen adjacent to the
guidewire artifact (*). (D) The extent of the calcifications (arrows) and their
relation to the surrounding fibrous components of the plaque are not as
clearly seen in the corresponding IVUS image. The borders of the guidewire
(*) artifact are marked by dotted lines in A, C. Tick marks, 1 mm. (Source:
Jang et al. 2002). 
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These features are based on models of light trans-
mission and reflectance. We verified our models by
fabricating phantom (realistic imitations) blood ves-
sels with known plaque types and checking the esti-
mates against measured values in these cases. 

The Plaque-Type Classifier
After extracting features from pixels in our IVOCT
images, we then train a support vector machine
(SVM) (Cristianini and Shawe-Taylor 2000) for classi-
fication of the individual pixels. The SVM is a state-
of-the-art classification method. It is theoretically
well founded and robust to noise in the data, which
is a desirable property. 

A second desirable property of the SVM is its abili-
ty to construct nonlinear classifiers through the use
of kernel functions. A kernel function implicitly
maps the input data to a possibly high dimensional
space, where it learns a linear classifier. Since this
mapping is done implicitly (that is, we never actual-
ly construct the high-dimensional feature vector), the
procedure is computationally efficient. In our work,
we use a radial basis function (RBF) kernel, which is a
commonly used kernel.

The SVM is a binary classifier. Given that we are
interested in classifying three different plaque types,
we use a one-versus-rest (OVR) approach for multi-
class classification. This produces three binary classi-
fiers, one treating each class as positive and the oth-
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Figure 4. Appearance of Plaque Types in Clinical Images. 

A is fibrous, B is lipid, and C is calcium. D shows the appearance of a normal blood vessel wall, which has layered structure. 
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ers as negative. During classification, each new exam-
ple is classified by all three classifiers. If more than
one classifies the point as positive, it is associated
with the label corresponding to the classifier with the
maximum margin.

There are two parameters that must be input to the
SVM: C, the regularization parameter that trades off
margin size and training error, and γ, the RBF kernel’s
bandwidth. In our experiments, we select these
parameters using an internal fivefold stratified cross-
validation loop and a two-dimensional grid search.

Image Data Sets
The clinical images (in vivo) that we used for evalu-
ating our approach were selected from a large data-
base of manually analyzed IVOCT images obtained
in a clinical setting. Images were collected on the C7-
XR system from St. Jude Medical Inc., Westford, MA.
It has an OCT swept source that has a 1310 nm cen-
ter wavelength, 110 nm wavelength range, 50 kHz
sweep rate, and ~12 mm coherence length. The pull-
back speed was 20 mm/s and the pullback length was
54 mm. The images consist of 35 IVOCT pullbacks of
the left anterior descending (LAD) and the left cir-
cumflex (LCX) coronary arteries of patients acquired
prior to stent implantation, with a total of 287
images across 35 patients. An expert cardiologist on
our team then labeled volumes of interest (VOIs) as
belonging to one of the three plaque types in the
images. The expert marked the VOIs of a particular
plaque type using freehand brush strokes. On the
clinical images the expert annotated 311 VOIs
(roughly equal number from each plaque type). VOIs
were of various sizes and shapes. Most consisted of 2–
5 image frames, 50–200 A-lines, and 20–50 sample
points in each A-line.

A concern with the images is that the image anno-
tations we train with are provided by an expert and
so could contain errors. To evaluate the performance
of the trained classifier on ground truth, we created a
second data set using cryo-imaging from cadaver
samples (Salvado et al. 2006). The system serially sec-
tions and acquires micron-scale color images using
different lighting wavelengths (figure 7, depicted lat-
er in this article, left column, bottom row shows an
example of lipid plaque obtained this way) and aut-
ofluorescence microscopy images along the vessel
(figure 7 left column, top row shows a calcified lesion
obtained this way). Visualization software is then
used on the cryo-images to generate microscopic res-
olution color/fluorescence volume renderings of ves-
sels, in which plaque architecture and components
are fully preserved (Nguyen et al. 2008, Prabhu et al.
2016). This provides an accurate depiction of the ves-
sel without the limitations of standard histological
fixation and processing (shrinkage, spatial distortion,
missing calcifications, missing lipid pools, tears, and
so on). Most importantly, this provides 3D validation

for volumetric IVOCT pullback. Furthermore, in cas-
es where plaque type may be ambiguous, the system
enables acquisition of standard cryo-histology.

We acquired a set of 106 such cryo-images. Note
that, since these are ex vivo, we do not use these
images for training our classifiers but use them to val-
idate the results. We call these images “cryo-images”
below to distinguish them from the previous set.

Empirical Evaluation
We now describe experiments to test our hypothesis
that the system we described will be able to accu-
rately and efficiently classify different plaque types
from IVOCT images. 

We preprocess all images for speckle noise reduc-
tion, baseline subtraction, catheter optical system
correction, and catheter eccentricity correction. We
segment the lumen and the back border using
dynamic programming. To do this, we use a cost
function from prior work (Wang 2012). An example
of the results of the back-border segmentation is
shown in figure 5 in both the r-θ view and the x-y
view. Segmenting the image in this way is important
because (1) the regions of interest are contained
between these borders and the rest of the pixels do
not contain any relevant information, and (2) it
enables us to properly compute the distance to the
lumen and the beam penetration depth discussed
previously, which are important signals for different
plaque types.

Next, we generate features by scanning the anno-
tated VOIs in the image pixel by pixel. For each pix-
el, we construct a 7 x 11 x 3 neighborhood (0.035mm
x 0.055mm x 0.6mm) around it. As long as the neigh-
borhood is within the VOI, the features of the box
are computed as explained above and the values are
assigned to the pixel. In the cryo-images we generat-
ed features for all pixels between border regions in a
similar way. 

For cross validation we use the processed images
with a leave-one-pullback-out strategy. Here, in each
iteration, we hold out all the data from one pullback
as the test set and use the remaining 34 pullbacks as
the training set. This mimics practical usage where
the system will operate on novel pullbacks and is
more stringent than using random folds. In a second
experiment, we ran the trained classifiers on the
cryo-images (these were not used at all during train-
ing/cross validation). We ran our experiments on a
64-bit Windows 7 machine with third-generation
Intel Core i7 and 16 GB RAM.

Results and Discussion
The receiver operating curves (ROC) for each OVR
classifier from the cross-validation experiment is
shown in figure 6. The summary statistics are shown
in table 1, where the accuracy, sensitivity, and speci-
ficity are noted at the optimal operating point along
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the curves. The ROC describes the system’s behavior
for a range of confidence threshold settings and
enables the cardiologist (the end user) to decide on
weighting the false positives (FPs) and false negatives
(FNs) unequally (a very desirable property according
to our expert). 

The overall accuracy results, averaged over 35
folds, are shown in table 2. As can be seen from all of
these results, our approach has excellent accuracy for
all three plaque types. In fact, across the 35 folds, the
median accuracy for all three plaque types is 100 per-
cent, indicating that our classifiers are able to per-
fectly separate the plaque types using the features we
designed. In a few folds, the accuracy is lower than
100 percent. We conjecture that this is because some
pullbacks have many more images associated with
them than others. When such a pullback is held out,
the training set size decreases in size and yields a clas-
sifier with lower accuracy.

In the second experiment, we ran our trained classi-
fier on the cryo-images. We also ran a baseline
approach following Ughi et al. (2013). This approach
uses beam-attenuation estimates from a layer model
applied to single A-lines and 2D texture and geometric
measures as features for classification with the added
requirement of manual region of interest selection for
analysis. These results are shown in table 3. Here the
“Other” row corresponds to pixels in these images that
belong to none of the three plaque types. The accura-
cy of the approach in this case is lower, possibly
because these are ex vivo images, which have some-
what different characteristics from the training set.
However, our approach still outperforms the state of
the art. Further, these values are still at a very useful lev-
el according to our expert. In particular, cardiologists
now divide an image into quadrants and simply state
whether a quadrant contains a certain plaque type. If
we use this as a performance measure, our current
approach has perfect accuracy on the cryo-images.

The results also indicate that in some cases some
plaque types may be confused with others. For exam-
ple, the average intensity of a lipid region may be
very close to that of calcium. However, they may still
be separable due to the fact that the lipid’s attenua-
tion coefficient is much higher. 

To confirm our intuitive understanding of the
plaques’ characteristics we performed a leave-one-fea-
ture-out experiment. In this experiment, we ran the
classifier using all of the features and noted the accu-
racy measures (as shown in table 2). We then
removed each feature at a time to see the impact on
the accuracy. We found that removing the attenua-
tion parameter had the biggest impact on the lipid
accuracy, reducing it down to 92.4 ± 8.87 percent,
while removing the average intensity feature had a
significant effect on the fibrous’ accuracy and uncer-
tainty (down to 95.2 percent ± 10.75).

In addition to high accuracy, our approach is also
efficient at classification. Each test fold (on average
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Figure 5. Results of the Back-Border Segmentation. 

An illustration of back-border segmentation (yellow line) along with lumen
segmentation (red line) in a typical clinical image in both views. (a) is the
polar image and (b) is the x-y image. The yellow line is broken due to view
conversion. Asterisk marks the guide-wire shadowing artifact. 

Table 1. Performance Measures.

Area under ROC and the accuracy, sensitivity, and specificity at the optimal
operating point on the ROC curves.

 Calcium Lipid Fibrous 

Accuracy 92.2 ± 6.28% 96.95 ± 2.79% 96.17 ± 4.0% 

Sensitivity 93.0 ± 2.58% 98.95 ± 2.35% 94.28 ± 5.23% 

Speci!city 96.5 ± 3.39% 93.65 ± 2.77% 95.89 ± 2.18% 

AUC 0.9837 0.9947 0.9959 



200,000 data points) was classified in 0.366 seconds
by our implementation. This facilitates future real-
time usage.

Finally, we consider whether an automatic classifi-
cation procedure such as this can be useful in reduc-
ing the amount of time taken to process images in a
clinical setting. In an initial experiment, we found
that cardiologists would spend approximately five
hours analyzing a section of a blood vessel. We then
created a tool (figure 8) with our classifier built in.
The screen of this graphic user interface (GUI) is
divided into two main regions. The leftmost region
contains the tools provided to the user. There, the
user can select which view is most informative, adjust
image contrast and/or window level, and so on. The
right region is the work area where the user can inter-
act with any of the views, slide along the pullback to
focus on the cross section of interest, make measure-
ments, create annotations, and more. The cardiolo-
gist would run the classifier for a new image and
then, using the interactive tools, analyze the results
and correct some of the errors in the predictions. 

The process, which the cardiologist follows, can be
described by following the process used in order to
annotate, classify, validate, and clean classification
results as shown in figure 7. In this figure, the left-
most column shows cryo-images (Roy et al. 2009)
while the second column from the left shows the
IVOCT images. Using the annotation function of the
plaque analysis tool, the expert would annotate the
image pixels as belonging to either calcium, lipid,
fibrous, or something else (used during training). The
third column from the left shows the result of this
annotation. It shows a mask, the same size as the
image itself, that indicates the location of each
plaque using colors. The next step includes running
the classifier, the results of which are shown in the
fourth column from the left. These results after pre-
processing to remove isolated artifact predictions are
presented to the cardiologist (rightmost column).

We found that this process took at most an hour, a
reduction of 80 percent. This effort reduction indi-
cates that improving the tool  (figure 8) will make it
deployable in the near future. 

Conclusion and Future Work
In this article, we have discussed an important
emerging application: an automated approach for
early plaque detection in blood vessels. Our approach
analyzes IVOCT images to solve this task. Using a
carefully designed feature set, we show that an SVM
with an RBF kernel is a high-accuracy classifier for
this task. Our results are of significant impact on this
important problem (Wagstaff 2012) with implica-
tions for early diagnosis of cardiovascular disease.
Now, for the first time, to our knowledge, it is possi-
ble to perform complete plaque analysis automati-
cally, enabling not only treatment planning for

plaque modification in real time but also to provide
enough information to perform studies on the effects
of various treatments of vulnerable plaque as well as
offline assessment of drug and biologic therapeutics.

In future work we will develop a complete software
suite for automated plaque characterization, creating
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Figure 6. ROC Curve for All Three Plaque Types. 

Area under the curve (AUC) values are 0.9837, 0.9947, and 0.9959 for calci-
um, lipid, and fibrous, respectively. 
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Table 2. Accuracy Results for 
Leave-One-Pullback-Out Experiment.

 Accuracy Median Acc. 

Overall 90.70 ± 8.28%  

Calcium 92.14 ± 10.74% 100% 

Lipid 96.40 ± 8.87% 100% 

Fibrous 100% ± 0.0% 100% 

Table 3. Accuracy Results for Cryo-images.

 Our Approach Baseline 

Overall 81.15% 69.4% 

Calcium 97.62% 66.88% 

Lipid 87.65% 67.07% 

Fibrous 97.39% 77.95% 

Other 77.96% 30.46% 



a powerful tool for live-time treatment
planning of coronary artery interven-
tions by adding functionality such as
integration with a real-time 3D visual-
ization module that will be able to
quantify (volume, area covered, and
others) the presence of calcified
regions. An example of such visualiza-
tion is shown in figure 9, which is
implemented by stacking the output of
multiple 2D images.

This can help in decision making
regarding stent implantation and
preimplantation treatment, or plaque
remodeling (for example, directional
atherectomy). We also plan to add an
explanatory module to help explain
the automated classification process to
the interventional cardiologists and to
accept feedback in an active learning
environment. Finally, we will develop
an easily accessible web-based tool for
offline analysis of IVOCT images.

We expect that such a tool will be
used by entities requiring fast analysis
that can provide data useful for drug
assessment, experimental therapeutics,
and experimental medical devices. 
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