
More and more, communicating or autonomous sys-
tems rely on software-based components that have
high standards in terms of reliability, robustness,

and quality. For instance, professional conferencing systems
or industrial robotics systems are released in markets where
high quality is considered a competitive advantage. For these
systems, an increased effort in software validation and verifi-
cation is required to produce high-quality components that
can be deployed in operational settings.

Software validation and verification include several dis-
tinct phases such as functional testing, performance testing,
and regression testing. Regression testing verifies that a new
release of a software component still performs as expected
after new features are implemented. By executing the soft-
ware component with existing test cases that were used to
test previous releases, regression testing checks for the
absence of regression faults, that is, faults that may have been
reintroduced into the application during development of
new features. In order to keep the time to market of new
releases short, a judicious selection of test scripts to execute
has to be performed.

Articles

SPRING 2017   73Copyright © 2017, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Using Global Constraints to 
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n Communicating or autonomous systems
rely on high-quality software-based compo-
nents. that must be thoroughly verified before
they are released and deployed in operational
settings. Regression testing is a crucial verifi-
cation process that compares any new release
of a software-based component against its
previous versions, by executing available test
cases. However, limited testing time makes
selection of test cases in regression testing
challenging, and some selection criteria must
be respected. Validation engineers usually
address this problem, coined as test suite
reduction (TSR), through manual analysis or
by using approximation techniques. In this
paper, we address the TSR problem with
sound artificial intelligence techniques such
as constraint programming (CP) and global
constraints. By using distinct cost-value-
aggregating criteria, we propose several con-
straint-optimization models to find a subset
of test cases that cover all the test require-
ments and optimize the overall cost of select-
ed test cases. Our contribution includes reuse
of existing preprocessing rules to simplify the
problem before solving it and the design of
structure-aware heuristics that take into
account the notion of the costs associated
with test cases. The work presented in this
paper has been motivated by an industrial
application in the communication domain.
Our overall goal is to develop a constraint-
based approach of test suite reduction that
can be deployed to test a complete product line
of conferencing systems in continuous deliv-
ery mode. By implementing this approach in
a software prototype tool and experimentally
evaluating it on both randomly generated and
industrial instances, we hope to foster a quick
adoption of the technology.



Dealing with multiple criteria when performing
regression testing is important. For example, select-
ing a test suite that minimizes total execution time
while preserving its coverage of user requirements is
highly desirable for testing of software components.
Yet the budget allocated to testing is limited, and
optimizing the selection of test cases is a time-con-
suming activity. In practice, validation engineers
solve the test suite reduction (TSR) problem through
manual analysis or by approximation techniques.
However, automated means to solve TSR instances
efficiently are required when software components
are developed in continuous delivery mode (Stolberg
2009). In fact, continuous integration involves fre-
quent execution of regression test scripts to detect
faults as early as possible, which means that auto-
mated selection of regression tests is indispensable in
this context.

Overview
Formally speaking, given a set of requirements and a
test suite that covers these requirements, the test
suite reduction problem aims at finding a smallest
subset of test cases in the test suite such that any
requirement is covered at least once. By considering
a cost value associated with each test case, a natural
extension of this problem is to minimize the overall
cost of the test suite, not just its size. Unfortunately,
solving TSR is intractable in general (Harrold, Gupta,
and Soffa 1993), and compromises have to be found
either by adopting heuristics-based approximation
algorithms or by using time-aware exact approaches.

Existing Results
The topic of test suite reduction has received consid-
erable attention in the last two decades. Roughly
speaking, we can distinguish greedy techniques (Tal-
lam and Gupta 2005, Jeffrey and Gupta 2005),
search-based testing techniques (Ferrer et al. 2015;
Wang, Ali, and Gotlieb 2015), and exact approaches
(Hsu and Orso 2009; Chen, Zhang, and Xu 2008;
Campos et al. 2012; Li et al. 2014; Gotlieb and Mari-
jan 2014).

Greedy techniques for test suite reduction usually
select first the test cases that cover the most require-
ments and iterate until all requirements are covered.
In the 1990s, Harrold, Gupta, and Soffa (1993) pro-
posed a technique that approximates the computa-
tion of minimum-cardinality hitting sets. This work
was further refined with different variable orderings
(Offutt, Pan, and Voas 1995). More recently, Tallam
and Gupta (2005) introduced the delayed-greedy
technique, which exploits implications among test
cases and requirements to refine further the reduced
test suite. The technique starts by removing test cas-
es that cover the requirements already covered by
other test cases. Then it removes test requirements
that are not in the minimized requirements set, and

finally it determines a minimized test suite from the
remaining test cases by using a greedy approach. Jef-
frey and Gupta (2005) extended this approach by
retaining test cases that improve a fault-detection
capability of the test suite. Comparing to the paper
by Harrold, Gupta, and Soffa (1993), the approach
produces bigger solutions, but with higher fault-
detection effectiveness.

One shortcoming of greedy techniques is that they
only approximate global optima without providing
any guarantee of optimality. Search-based testing
techniques have also been tailored for test suite
reduction. Wang, Ali, and Gotlieb (2015) explore
classical metaheuristics such as hill climbing, simu-
lated annealing, or weight-based genetic algorithms
for (multiobjective) test suite reduction. By compar-
ing 10 distinct algorithms for different criteria, they
observed that random-weighted multiobjective opti-
mization is the most efficient approach. However, by
assigning weights at random, this approach is unfor-
tunately not able to place priority over the various
objectives. Ferrer et al. (2015) examine other algo-
rithms based on metaheuristics. All these techniques
can scale up to problems that have a large number of
test cases and requirements, but they cannot explore
the overall search space and thus they cannot guar-
antee global optimality.

On the contrary, exact approaches, which are
based either on Boolean satisfiability or integer linear
programming (ILP), can reach true global minima.
The best-known approach for exact test suite mini-
mization is implemented in MINTS (Hsu and Orso
2009). MINTS has been used to perform test suite
reduction for various criteria including energy con-
sumption on mobile devices (Li et al. 2014). Similar
exact techniques have also been designed to handle
fault localization (Campos et al. 2012). Generally
speaking, the theoretical limitation of exact
approaches is the possible early combinatorial explo-
sion to determine the global optimum, which expos-
es these techniques to serious limitations even for
small problems. A hybrid method based on ILP and
search, called DILP, is proposed by Chen, Zhang, and
Xu (2008), where a lower bound for the minimum is
computed and a search for finding a smaller test suite
close to this bound is performed. Recently, another
ILP-based approach is proposed by Hao and col-
leagues (Hao et al. 2012) to set up upper limits on the
loss of fault-detection capability in the test suite.
Mouthuy, Deville, and Dooms (2007) proposed a
constraint called SC for the set-covering problem.
They created a propagator for SC by using a lower
bound based on an ILP relaxation. Finally, Gotlieb
and Marijan (2014) introduced an approach for test
suite reduction based on the computation of maxi-
mum flows in a network flow. This initial idea has
partly triggered the work reported in the present arti-
cle.
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Contributions
This article proposes a new approach of test suite
reduction based on constraint programming (CP)
and global constraints. Global constraints encode
relations over a nonfixed number of variables with
dedicated and efficient filtering algorithms. Our
approach uses three special global constraints devel-
oped in CP, namely NVALUE, GLOBALCARDINALITY, and
SCALAR_PRODUCT. NVALUE constrains the number of
distinct values that can be taken by a set of variables
(Pachet and Roy 1999), while GLOBALCARDINALITY gen-
eralizes this relation by considering explicit cardinal-
ity values for these variables (Régin 1996).
SCALAR_PRODUCT simply encodes the scalar product
between two vectors of variables as a relation. By
combining these global constraints with advanced
preprocessing rules and sophisticated structure-aware
search heuristics, the proposed approach creates a
constraint-optimization model that competes with
the best known exact approach for test suite reduc-
tion, namely MINTS (Hsu and Orso 2009). As said
above, associating a cost value to each test case is a
natural extension of TSR. Indeed, such a cost value
can represent or aggregate distinct notions such as
execution time, code coverage, energy consumption
(Li et al. 2014), or fault-detection capabilities (Cam-
pos et al. 2012). Using these cost values, TSR reduces
to the problem of selecting a subset of test cases such
that all the requirements are covered and the overall
cost of the test suite is minimized. The proposed
approach is also capable of optimizing an overall cost
function depending of these cost values, while pre-
serving the full coverage of requirements. We imple-
mented our approach in a tool called Flower/C and
performed a set of experiments with both randomly
generated TSR instances and industrial instances. The
experimental results show that Flower can be
deployed into an industrial context and its route for
exploitation is discussed. Next section formally
defines TSR and gives some background on CP and
global constraints. The following section shows three
CP optimization models involving distinct combina-
tions of global constraints. It also introduces prepro-
cessing rules for TSR that can simplify the instances
beforehand, and a dedicated search heuristics. The
following section presents an experimental evalua-
tion of the proposed models as well as a comparison
with other approaches. Finally, the last sections draw
perspectives for the industrial exploitation of the pro-
posed approach and conclude the article.

Background
This section formalizes the test suite reduction prob-
lem and briefly reviews the notion of global con-
straints.

Test Suite Reduction
Test suite reduction aims to select a subset of test cas-

es out of a test suite, which minimizes its overall cost,
while retaining its coverage of requirements. Rough-
ly speaking, a TSR instance is defined by an initial test
suite T composed of m test cases {t1, …, tm}, each test
case being associated with a cost value noted c(ti), a
set of n requirements R = {r1, …, rn}, and a function
called cov(ri) that maps each requirement ri to the
subset of test cases that cover it. We suppose that
each requirement is covered by at least one test case
and each test case covers at least one requirement. An
example with five test cases and five requirements is
given in table 1, where the value given in the table
denotes the cost of each test case. Solving TSR aims at
finding a subset of test cases such that every require-
ment is covered at least once, and the overall cost is
minimized.

A labeled bipartite graph can be used to encode
any TSR instance, with edges denoting the relation
cov and labels denoting the costs over the test cases,
as shown in figure 1. The overall cost of a test suite
can be computed as the sum of each individual cost
of its test cases, but other functions can be consid-
ered as well (for example, the max of costs). Note that
the cost associated to any test case does not differ
with respect to the covered requirement. The frame-
work can be extended with a distinct cost for each
requirement, but this brings more complexity with-
out much benefit for validation engineers. Note also
that the optimal solution shown in figure 1 is not
unique. For example, {ta, tb, td} covers all the require-
ments and has also TotalCosts = c(ta) + c(tb) + c(td) = 5.
When the cost associated to each test case are all the
same, then TSR reduces to the problem of finding a
subset of minimal size.

Constraint Programming 
and Global Constraints
Constraint programming is a powerful declarative
paradigm where logic and control are driven by con-
straint solving. Any constraint enforces a symbolic
relation over a set of unknown variables, which take
their values in a domain (Rossi, van Beek, and Walsh
2006). When the domain is finite, it can be mapped
to a finite subset of integers without any loss. A con-

Table 1. A TSR Problem Instance.

cost r1 r2 r3 r4 r5 

ta 2 2 - - - 

tb 1 - 1 - - 

tc - 3 3 - 3 

td - - - 2 2 

te - - - 1 - 



straint program over finite domain variables is a
finite set of constraints, which come with filtering
algorithms. These algorithms prune the domains of
the constraint variables from some of their inconsis-
tent values. For instance, if X takes an unknown val-
ue in the finite domain {2, 3, 5} and Y takes a value
in {3, 4, 5, 6} then the filtering algorithm associated
with X = Y can prune the domains of both X and Y
to {3, 5}. In this context an assignment is just a map-
ping from any variable, noted with uppercase letters
in the article, to a value from its respective domain,
noted with lowercase letters. A constraint program is
satisfiable when there exists at least one assignment
that satisfies all the constraints. It is unsatisfiable oth-
erwise. Among the satisfiable assignments, some can
minimize a cost function and thus, CP can be used to
solve optimization problems as well.

In CP, two types of constraints can be distin-
guished, namely the relations that hold over a
known number of variables (typically 1, 2, or 3) and
relations that hold over a nonfixed number of vari-
ables. Constraints from this latter category are called
global constraints, especially when they implement
dedicated and efficient filtering algorithms.

A first example of global constraints is given by the
following constraint:

Definition 1. (NVALUE [Pachet and Roy 1999]). 
Let N be a domain variable and V be a vector of
domain variables, NVALUE(N, V ) holds iff the number
of distinct values in V is equal to N.

For instance, NVALUE(N, [3, 1, 3]) entails N = 2 and
is solved, NVALUE(3, [X1, X2]) is unsatisfiable, and
NVALUE(1, [X1, X2, X3]) entails X1 = X2 = X3.

Another example of global constraint, which gen-
eralizes NVALUE is now given:

Definition 2. (GLOBALCARDINALITY [Régin 1996]). 

Let T = (T1, …, Tn) be a vector of domain variables, let
d = (d1, …, dm) be a vector of distinct integers, and let
C = (C1, …, Cm) be a vector of domain variables, GLOB-
ALCARDINALITY(T, d, C) holds iff for each i ∈ 1..m the
number of occurrences of di in T is Ci. The Ci variables
are the occurrence variables of the constraint.

For instance, GLOBALCARDINALITY((T1, T2, 5), (5, 7),
(C1, C2)) prunes the domains of T1 and T2 to {5, 7},
the domain of C1 to {1, 2, 3} and the domain of C2 to
{0, 1, 2}. A polynomial filtering algorithm for this
constraint was given by Regin (1996).

CP Models of the TSR Problem
In this section, we present distinct constraint-opti-
mization models based on NVALUE, GLOBALCARDINALI-
TY for the TSR problem.

A Naive Model (NVALUE)
In CP, TSR can easily be encoded with the following
scheme: each requirement to be covered can be asso-
ciated with a domain variable R having as finite
domain, which is composed of the test cases that cov-
er the requirement. More precisely, R belongs to {t1,
…, tn}, where each ti corresponds to an integer associ-
ated with a test case that covers R. So, for example,
the instance reported in table 1 can be encoded as fol-
lows:

R1 ∈ {1, 2}, R2 ∈ {1, 3}, R3 ∈ {2, 3}, R4 ∈ {4, 5}, R5 ∈ {4} 

where ta is associated with 1, tb is associated with 2,
and so on.

Figure 2 shows a first constraint-optimization pro-
gram for an instance of test suite reduction.

This model aims to minimize the number of dif-
ferent values that can be taken by R1, …, Rn, that is,
the number of distinct test cases that cover all the
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Figure 1. TSR as a Bipartite Graph with an Optimal Solution.

(a) Bipartite Graph. (b) Optimal Solution.
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requirements. Using NVALUE enables the minimiza-
tion process to reduce the number of test cases, while
the second part of the model computes the sum of
costs. This model is naive for two reasons: firstly, it
does not guarantee finding the minimum of costs
even though it finds the minimum number of test
cases (issue 1), and secondly, it allows us only to
search on a tree composed of the requirement vari-
ables (issue 2). In fact, the only variables of this mod-
el are the Ri, which means that branching on the
selection of test cases is unfortunately not possible.
For example, selecting first the test cases that cover
the most requirements while searching for a mini-
mum is not possible. In order to tame this problem
(issue 2), another model based on GLOBALCARDINALITY

can be proposed.

A Model with GLOBALCARDINALITY(GCC2)
Let Oi be a domain variable representing the number
of times test case ti is selected to cover R1, …, Rn. The
model shown in figure 3 addresses TSR by using two
GLOBALCARDINALITY constraints.

The first GLOBALCARDINALITY enforces the coverage
relation between test cases and requirements by con-
straining the occurrence variables Oi, while the sec-
ond GLOBALCARDINALITY counts the number of 0
(zeros) in the list of occurrence variables. This allows
the model to constrain the selection of test cases by
maximizing the number of unselected test cases.
Thus, branching on the number of occurrences of

each test case becomes possible with this model. Still,
this model does not address issue 1 mentioned above,
as it does not guarantee to reach the minimum of the
overall cost of test cases. Another model can be pro-
posed to deal with both issue 1 and issue 2.

An Optimized Model (Mixt)
In this third model, (R1, …, Rn.), (O1, …, Om) are deci-
sion variables, only known through their domain.
The Boolean variables B1, …, Bm are local variables
introduced to establish the link with costs. By using
the global constraint SCALAR_PRODUCT((B1, …, Bm), (c1,
…, cm), TotalCosts), which enforces the relation 

this model actually minimizes TotalCosts, the sum of
the costs of selected test cases. In fact, the nonnull Bi
variables correspond to the selected test cases. The
constraint GLOBALCARDINALITY allows us to constrain
the variables Oi, which are associated with the num-
ber of selected test cases. This model can be solved by
searching the space composed of the possible choic-
es for (R1, …, Rn), (O1, …, Om). Interestingly, it allows
us to branch either on the choice of requirements or
on the choice of test cases. Hence, it addresses both
issues 1 and 2. An optimal solution of this model is
an optimal solution of TSR and vice versa, as proved
by the following sketch of proof.

(⇒) An optimal solution of TSR corresponds to the
assignment of (R1, …, Rn) with test cases that mini-

TotalCosts = 1!i!mBi" # ci
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Figure 2. A First Constraint-Optimization Model for TSR (Naive).

Minimize Ns.t.NVALUE(N, (R1, . . . ,Rn))
for i = 1 to n s.t. Ri ≠ Rj for any j do ∑i c(tRi) = Total Costs.

Figure 3. A Constraint-Optimization Model for TSR Based on GlOBAlCARDINAlITY.

Maximize N s.t.

GLOBALCARDINALITY((R1, . . . ,Rn); (t1, . . . , tm); (O1, . . . ,Om))∧
GLOBALCARDINALITY((O1, . . . ,Om); (0); (N))
for i = 1 to n s.t. Ri ≠ Rj for any j do ∑i c(tRi) = Total Costs.



mize the sum of costs. Let us call {tp, …, tq} this solu-
tion and minimum this sum. This is also an optimal
solution of our model. In fact, the variables {Op, …,
Oq} are strictly positive because their associated test
case is selected in the solution through GLOBALCARDI-
NALITY, which means that only the corresponding {Bp,
…, Bq} are equal to 1 and thus SCALAR_PRODUCT((B1,
…, Bm), (c1, …, cm), TotalCosts) is equal to minimum.

(⇐) An optimal solution m of our constraint-opti-
mization model is also an optimal solution of TSR. In
the model, TotalCosts is assigned to the sum of costs
of selected test cases and there exists no other assign-
ment of Bi, which gives a smaller value than m. Then,
it means that m is actually the minimum cost of the
TSR instance, and the test cases selected by the Bi are
the solution of this problem.

Even if the model given in figure 4 is generic, it
involves searching a space of exponential size O(Dn)
where D denotes the size of the greatest domain of
any requirement variable and n is the number of test
cases. This does not come as a surprise as TSR has
been shown to be NP-hard (Hsu and Orso 2009).

Solving TSR can be improved by considering a
number of optimizations, including preprocessing
rules and specialized search heuristics.

Preprocessing
Preprocessing can be used to reduce the size of the
problem beforehand, by using the following rules:

Rule 1.
For two test cases t1, t2, if all the requirements covered
by t1 are included in the subset of requirements cov-
ered by t2, then t1 can be safely ignored during search,
as it is always be preferable to select t2 instead of t1.

Rule 2.
Conversely, for two requirements r1, r2, if all test cas-
es covering r1 are included in the subset of test cases
covering r2, then r2 can be safely removed from the
set of requirements to be covered. Indeed, any test
case covering r1 will automatically cover r2 as well.

Rule 3.
If there is a requirement that is covered by only a sin-
gle test case t then t must be included in the solution
set. Figure 5 illustrates these preprocessing rules.

A Dedicated Heuristic
Search heuristics include strategies for selecting a
variable to be enumerated first and a value to be
selected first. Both strategies can be tuned by the
available constraints and variables of the model. The
first idea is to use the classical first-fail principle,
which selects first the variable representing the
requirement that is covered by the least number of
test cases. As all the requirements have to be covered,
it means that these test cases are most likely to be
selected. However, this strategy ignores the selection
of the test case having the least cost or the test cases
covering the most requirements. Regarding value
selection, it is thus better to define a special heuristic
for our problem.

Unlike the static variable selection strategy used in
greedy algorithms, such as, for example, the selection
of variables based on the number of covered require-
ments, our TSR-dedicated strategy is dynamic and the
ordering is revised at each step of the selection
process. It selects first the variable Oi associated with
the test case with the smallest cost. Then, among the
remaining test cases that cover any requirement not
yet covered, it selects the variable Oj with the small-
est cost and iterates until all the requirements are
covered. In case of a choice that does not lead to a
global minimum, the process backtracks and selects a
distinct test case, not necessarily associated with the
smallest cost. Regarding the value-selection strategy,
each time a value selection is made, our TSR-dedicat-
ed heuristics select first the test cases that cover the
most requirements. Property 1 formalizes this idea.

Property 1.
Let each test case ti be represented by an occurrence
variable Oi taking its values in 0..maxi where maxi is
dynamically updated with the current partial assign-
ment. Then, for each solution X of the TSR problem
with cost f (X) where Oi = ni such that 0 < ni < maxi
(strict inequalities), there is at least one other solution
Y with cost f(Y ) ≤ f (X) where either Oi = 0 or Oi = maxi.

Note that our proposed TSR-dedicated heuristic is
incomplete, meaning that some parts of the search
tree can remain unexplored. Indeed, symmetrical solu-
tions can be ignored as explained in figure 6, but, refer-
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Figure 4. A Constraint-Optimization Model for Solving TSR.

Minimize TotalCosts s.t.
GLOBALCARDINALITY((R1, . . . ,Rn); (1, . . . ,m); (O1, . . . ,Om)),
for i = 1 to m do Bi = (Oi > 0),
SCALAR_PRODUCT((B1, . . . ,Bm); (c1, . . . , cm), TotalCosts). 
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Figure 5. Preprocessing. 

The edge (r4, te) can be safely removed by rule 1, since r4 is also covered by td, which covers another requirement. Rule 2 allows one to remove
edges (r5, tc) and (r5, td) as any test case covering r4 also covers r5. Finally, td is included in the solution set by rule 3, since it remains the only
covering r4 and r5.
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Figure 6. Two Symmetrical Solutions for CP, a Single Solution of TSR. 

In both graphs, the same optimal test suite is obtained, T΄ = {ta, tb}. However, it is associated with distinct solutions for CP because the Ri
are assigned to distinct values: on the left, R1 is assigned to ta while on the right R1 is assigned to tb. With our dedicated heuristic, an arbi-
trary selection is made, for example,, the occurrence variable Oa representing ta is assigned to 2 as shown on the left. In case of necessary
backtrack, it would be assigned to 0, but never to 1, as shown on the right.



ring to Property 1, our TSR-dedicated heuristic guar-
antees that at least one optimal solution is found.

Experimental Evaluation
We implemented the constraint-optimization mod-
els and search heuristic described above in a tool
called Flower/C, by using SICStus Prolog and its clpfd
library. This library implements a finite domains con-
straint solver. Flower/C reads a file that contains the
data about test cases, the covered requirements, and
the costs associated to test cases and processes these
data by constructing a corresponding bipartite graph
and tuning the constraint-optimization models for
solving the TSR instance. Solving the model involves
preprocessing and search among feasible solutions
with the proposed TSR-dedicated search heuristics.
These steps are encoded in SICStus Prolog.

Both random and industrial instances of TSR were
considered for the experimental evaluation. For ran-

dom problems, we created a generator of TSR
instances, which takes several parameters as inputs,
such as the number of requirements, the number of
test cases along with their associated costs, and the
density of the relation cov, which is captured with d
representing the maximum arity of any links in cov.
The generator draws a number a at random between
1 and d and creates a edges in the bipartite graph,
which represents cov. For industrial instances, we
used data (test cases, coverage, costs) from regression
testing of communication software provided by
industry.

All our experiments were run on a standard i7-
2929XM CPU machine at 2.5 GHz with 16 GB RAM.

Comparison of the Various CP Models
Figure 7 compares the CPU time required for finding
optima with the three distinct CP models. In order to
keep the comparison fair, we ignored costs in this first
experiment so that optimality was only considered
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Figure 7. Comparison of CPU Time for the CP Models.
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on the number of selected test cases. In each data set,
20 random samples were generated. For all but TD1,
the GCC2 model times out (after 300 seconds). For
the NVALUE model, we observe that the variation is
very high in most cases (TD2, TD4, TD5). Sometimes,
this models also times out. On the contrary, the Mixt
model does not present much variation, which
means that the TSR-dedicated heuristic is robust and
useful in most cases. In figure 8, we compute the per-
centage of test cases remaining in the solution set
after 30 seconds. A good reduction rate in a limited
amount of time is crucial for any industrial adoption,
as test suite reduction has to be performed within a
continuous integration process, where the reduction
is computed each time a new software release is com-
mitted.

We observe in this experiment that NVALUE is out-
performed by both GCC2 and Mixt, which both reach
the same reduction rate. This is due to the selection
of the branching heuristic, which is different for the

NVALUE model, where only the requirement variables
are available for branching.

Comparison with Other Approaches
In the first experiment, we compared our implemen-
tation, Flower/C, with three other approaches,
namely MINTS/MiniSAT+, MINTS/CPLEX, and
Greedy on randomly generated instances. MINTS is
a generic tool that handles the test suite reduction
problem as an integer linear program (Hsu and Orso
2009). For each requirement to be covered, a linear
inequality over Boolean variables is generated that
enforces the coverage of the requirement. The
Boolean variables ensure the selection of test cases.
MINTS can be interfaced with distinct black-box
constraint solvers, including MiniSAT+ and CPLEX.
We also implemented a simple greedy approach for
solving the TSR problem, which is based on a static
ordering of the test cases covering the most require-
ments.

Figure 9 shows the results of comparison of the
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Figure 8. Comparison of Reduction Rate.

(as percentage of remaining test cases, time-out = 30 seconds).
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four approaches in terms of reduction rate, obtained
in 60 seconds running time. In this experiment, the
same cost values are used for all test cases. We observe
that for the four groups of random instances (ranging
from 1000 to 2000 requirements with two distinct
maximal density values, 7 and 20), Flower/C achieves
equal or better results than all the three other
approaches in terms of reduction rate in a limited
amount of time. Regrading the two last groups (TD3
and TD4), Flower/C performs strictly better than all
the three other approaches, reaching exceptional
reduction rates. It is worth noticing that for each
group 100 random instances were generated, which
means that the results are quite stable with respect to
random variations. It is also quite clear that CPLEX
performs much better for these problems than Min-
iSAT+. This does not come as a surprise as TSR has a
simple formulation in terms of integer linear pro-

gram (CPLEX), while MiniSAT+ requires translation
into SAT clauses.

In the second experience, reported in figure 10, we
gave different cost values to each instance by making
the random generator select at random a value
between 1 and a maximum value for each test case.
In this experiment, no result is reported for
MINTS/MiniSAT+ because the objective function as
the sum of cost values cannot easily be encoded into
Boolean SAT clauses. Therefore, only the results with
MINTS/CPLEX, Flower/C, and Greedy are reported.
Figure 10 shows that the results are in favor of
MINTS/CPLEX on the four groups of random
instances, which means that more effort is needed to
find better CP models and search heuristics when
costs are present.

Evaluation on Industrial Instances
We conducted the third experiment on industrial
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Figure 9. Results of Comparison of the Four Approaches in Terms of Reduction Rate.

Comparison of reduction rate of Flower/C (Mixt), MINTS/MiniSAT+, MINTS/CPLEX, and Greedy on random instances with uniform costs
(time-out = 60 seconds).
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instances coming from an industrial partner involved
in the development of communication systems. The
data were extracted from the continuous integration
process during one cycle and converted to the spe-
cific format processed by Flower/C. The results are
shown in table 2. The CPU time required to solve
industrial instances of TSR shows that the Mixt mod-
el performs the best. Interestingly, the reduction rate
shown in the fifth row (obtained with Mixt) is quite
high for all the five industrial instances (ranging
from 61.80 percent to 26.67 percent). This shows the
importance of solving TSR in practice for our indus-
trial partner. Finally, the last row of the table shows
the number of removed requirements during prepro-
cessing.

Evaluating Preprocessing Rules
We performed other experiments to evaluate pre-
cisely the effectiveness of preprocessing rules for
both randomly generated TSR problems and indus-
trial instances, as compared to the preprocessing
used in MINTS/CPLEX. In figure 11, we evaluated the
importance of MINTS/CPLEX’s own preprocessing1

in reaching an optimal solution by observing the size
of the solution sets at different time points, and com-
pared it with our own preprocessing. We found some
data sets where Flower/C’s preprocessing rules were
more efficient than MINTS/CPLEX’s preprocessing as
shown in figure 11. However, there are also other cas-
es where the opposite was observed. In fact, Flower/C
preprocessing rules cannot be well compared with
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Figure 10. Results of Comparison of Reduction Rate on the Four 
Groups of Random Instances with Nonuniform Cost Values
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MINTS/CPLEX’s preprocessing as both tools work on
very different data structures. Finally, we looked at
the gain in terms of CPU time while activating and
deactivating Flower/C’s preprocessing as shown in
figure 12. The gain is not really spectacular even if
the percentage of removed test cases is quite good.

Comparison of Several Search Heuristics
Figure 13 shows the CPU time for three variable-
selection heuristics (that is, max, min, ff) used togeth-
er with the CP Mixt model, while the value-selection
heuristic remains unchanged. The heuristic max
selects the variable with the greatest upper bound,
min selects the variable with smallest lower bound,
while ff selects the variable with the smallest domain.

In this experiment, max achieves better result by
selecting the occurrence variable that has the greatest
arity, that is, the one associated with a test case that
covers the most requirements. We selected it to be
employed with our CP Mixt model.

Figure 14 compares different value-selection
heuristics with max, including our own heuristics
called value(enum), step, and bisect. The heuristic step
branches on all the values of the domain of occur-
rence variables in increasing order, bisect performs
domain-splitting using the middle point of the
domain of each variable, while our heuristic only
branches on Max and 0 for domain {0, 1, …, Max}.

As expected, figure 14 shows much better results
for our heuristic. However, it is worth keeping in

Articles

84 AI MAGAZINE

Table 2. Evaluation of Flower/C on Industrial Instances.

Requirements 59 53 50 37 37 156 

Test cases 107 90 93 100 100 377 

CPU Time Nvalue(s) 0.00 0.10 0.01 0.01 0.01 0.03 

CPU Time GCC2(s) 300.00 102.00 91.80 59.16 6.09 300.00 

CPU Time Mixt(s) 0.00 0.01 0.00 0.00 0.00 0.01 

Reduction rate (%) 28.97 26.67 29.03 40.00 37.00 61.80 

Removed requirements (%) 32.00 30.19 30.00 32.43 45.95 44.87 

Figure 11. Evaluation of CPlEX Preprocessing versus Mixt.
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mind that our strategy is incomplete. Even though it
may not explore parts of the search space that con-
tain optimal solutions, it preserves at least one opti-
mal solution. When sufficient time is allocated to the
search, it always has the opportunity to reach an
optimal value faster than complete heuristics.

Path Toward Deployment
The work presented in this article has been motivat-
ed by the industrial problem of software regression
testing in the communication domain. Software is
characterized by a high degree of configurability, pro-
viding flexibility for end users to adapt systems to
their specific needs. However, configurability
involves higher complexity of software testing, and
typically larger test suites. At the same time, software
is developed following a continuous integration prac-
tice, which is characterized by a short test feedback
loop. Extensive test suites, limited test time, and high
requirements for software quality together set the
challenge of implementing an efficient test suite
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Figure 12. Comparison of CPU Time Versus Preprocessing.
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Figure 13. CPU Time of the Variable-Selection Heuristics.
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reduction that is able to reduce costs and improve the
effectiveness of regression testing in practice.

Our approach has been designed in interaction
with test engineers. The process involved observing
current test selection practice done manually by
engineers, interviews with engineers to understand
the objective behind test selection, and capturing
typical metrics such as the frequency and size of
regression test runs, regression test selection criteria,
and test failure rates. We evaluated the performance
of the approach on several instances of industrial test
suites coming from the described domain. The results
shown that the approach is applicable, and that it
can improve the speed and quality of regression test
selection in continuous integration in practice. How-
ever, more work is needed to enable seamless inte-
gration with an industrial testing framework.

We see the deployment of our approach as a staged
process. As part of first-phase deployment, we devel-
oped a prototype tool, and we provided training for
engineers on the key concepts of CP used in our
approach. We deem this step necessary for adopting
the approach by industry, as we observed a limited
familiarity with CP in this particular setting. We
envisage full deployment as an iterative process,
where we will be enhancing the tool functionality
and usability based on industry feedback. The
enhancements will relate more flexible test opti-
mization, including test prioritization, to support
achieving various testing objectives. At the final
stage, we expect the tool to be deployed organiza-
tionwide, supporting cost-effective test automation
much needed in complex continuous integration
environments.

Conclusion
This article presents the application of CP techniques
using global constraints to improve the cost efficien-
cy of software regression testing. Three CP models
using the global constraints NVALUE and GLOBALCAR-
DINALITY are proposed to encode test suite reduction
(TSR) in such a way to ensure the coverage of all user
requirements while additionally minimizing the
overall cost of a test suite. According to our knowl-
edge, this is the first time that these global con-
straints are applied to the reduction of test suites in
software testing. We find that some preprocessing
rules can drastically reduce the size of initial problem
instances and that our proposed TSR-dedicated strat-
egy can outperform other more classical labeling
heuristics such as those based on the first-fail princi-
ple. 

Note that the proposed labeling heuristic is not
complete, which means that it does not explore the
overall search space. This may explain why it has a
stronger competitive advantage over other heuristics.
At the same time, this incompleteness in the search
does not compromise reaching a true global opti-
mum for the constraint-optimization model, since
only symmetrical solutions are removed. The three
CP models are compared on random instances with
the state-of-the-art academic tool MINTS interfaced
with MiniSAT+ and CPLEX. Our results show that CP
is efficient and competitive with MINTS in terms of
percentage of test suite reduction.

Furthermore, we evaluate our approach on indus-
trial regression testing on communication software
systems. Initial results show that the approach is use-
ful for improving the speed and quality of regression
test selection in continuous integration. However,
there are challenges in fully applying complex CP
techniques to testing in practice. Although the pro-
posed search heuristics are quite efficient to prune
the search space beforehand, we do not know yet if
other heuristics could be more beneficial. Exploring
this question is part of our planned further work. We
also want to ease the adoption of CP-based solutions
in industry by the design of tailored software tools
encapsulating the complexity of constraint solving
and providing scalable integrations with software
testing tool chains.
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Figure 14. CPU Time of the Value-Selection Heuristics.
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Note
1. CPLEX processing can be deactivated on demand.
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