Steps Toward Robust Artificial Intelligence

  • Thomas G. Dietterich AAAI


Recent advances in artificial intelligence are encouraging governments and corporations to deploy AI in high-stakes settings including driving cars autonomously, managing the power grid, trading on stock exchanges, and controlling autonomous weapons systems. Such applications require AI methods to be robust to both the known unknowns (those uncertain aspects of the world about which the computer can reason explicitly) and the unknown unknowns (those aspects of the world that are not captured by the system’s models). This article discusses recent progress in AI and then describes eight ideas related to robustness that are being pursued within the AI research community. While these ideas are a start, we need to devote more attention to the challenges of dealing with the known and unknown unknowns. These issues are fascinating, because they touch on the fundamental question of how finite systems can survive and thrive in a complex and dangerous world
How to Cite
Dietterich, T. G. (2017). Steps Toward Robust Artificial Intelligence. AI Magazine, 38(3), 3-24.