
The marvels of modern technology can largely be attrib-
uted to the discovery and characterization of new mate-
rials. The discovery of semiconductors laid the founda-

tion for modern electronics, while the formulation of new
molecules allows us to treat diseases previously thought
incurable. Looking into the future, some of the largest prob-
lems facing humanity now are likely to be solved by the dis-
covery of new materials. In this article, we explore the tech-
niques materials scientists are using and show how our novel
artificial intelligence system, Phase-Mapper, allows materials
scientists to quickly solve material systems to infer their
underlying crystal structures and has led to the discovery of
new solar light absorbers.
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� From the stone age to the bronze, iron, and
modern silicon ages, the discovery and charac-
terization of new materials has always been
instrumental to humanity’s development and
progress. With the current pressing need to
address sustainability challenges and find alter-
natives to fossil fuels, we look for solutions in the
development of new materials that will allow for
renewable energy. To discover materials with the
required properties, materials scientists can per-
form high-throughput materials discovery, which
includes rapid synthesis and characterization via
X-ray diffraction (XRD) of thousands of materi-
als. A central problem in materials discovery, the
phase map identification problem, involves the
determination of the crystal structure of materi-
als from materials composition and structural
characterization data. This analysis is tradition-
ally performed mainly by hand, which can take
days for a single material system. In this work
we present Phase-Mapper, a solution platform
that tightly integrates XRD experimentation, AI
problem solving, and human intelligence for
interpreting XRD patterns and inferring the crys-
tal structures of the underlying materials. Phase-
Mapper is compatible with any spectral demix-
ing algorithm, including our novel solver,
AgileFD, which is based on convolutive nonneg-
ative matrix factorization (NMF). AgileFD
allows materials scientists to rapidly interpret
XRD patterns, and incorporates constraints to
capture prior knowledge about the physics of the
materials as well as human feedback. With our
system, materials scientists have been able to
interpret previously unsolvable systems of XRD
data at the Department of Energy’s Joint Center
for Artificial Photosynthesis, including the Nb-
Mn-V oxide system, which led to the discovery of
new solar light absorbers and is provided as an
illustrative example of AI-enabled high-through-
put materials discovery.



A powerful strategy employed by materials scientist
is high-throughput materials discovery (Green,
Takeuchi, and Hattrick-Simpers 2013), the idea being
to rapidly synthesize thousands of different materials
and quickly screen them for desirable properties.
These materials are developed by depositing different
elements on a wafer in varying amounts, which is
analogous to atomic spray painting, where elements
are mixed with different proportions, rendering sim-
ple mixtures as well as enabling the emergence of new
materials, just as the mixture of primary colors results
in both obvious mixtures and secondary colors.

In this article, we address the phase-mapping prob-
lem, a central problem in high-throughput materials
discovery, which has critically lacked an efficient
solution method. At a fundamental level, the phase-
mapping problem entails demixing data measure-
ments in terms of a few simple components or crystal
structures, each describing a single material, subject
to intricate constraints on the solutions induced by
the physics of the underlying materials. A material’s
phase describes a range of elemental composition and
other conditions over which its properties and struc-
ture, the arrangement of the constituent atoms,
change little. X-ray diffraction (XRD) is a ubiquitous
technique to characterize crystal phases, as it pro-
duces a signal containing a series of peaks that serve
as a fingerprint of the underlying atomic arrangement
or crystal structure. Using traditional methods, mate-
rials scientists can obtain and interpret 1 to 10 XRD
measurements per day, and with the recent develop-
ment of automated, synchrotron-based XRD experi-
ments, the measurement throughput has been accel-
erated to 103 to 105 measurements per day (Gregoire
et al. 2009; 2014). The creation of a phase-mapping
algorithm that generates phase diagrams from these
data remains an unsolved problem in materials sci-
ence despite a series of advancements over the past
decade (Hattrick-Simpers, Gregoire, and Kusne 2016).
The problem is challenging, given that often the X-
ray diffraction patterns correspond to a mixture of
crystal structures, some of them not necessarily sam-
pled individually, requiring an algorithm that can
demix patterns while simultaneously identifying the
basis patterns. The most pertinent need is to generate
a physically meaningful phase diagram (one that gen-
erates materials science knowledge) for the materials
in a given library, or a collection of co-deposited
materials on a substrate, which relies on the spectral
demixing of the 102–103 XRD patterns into a small set
of basis patterns (typically less than 10).

The traditional analysis workflow relies on itera-
tive manual analysis and heuristics, resulting in the
analysis of only a few systems a year. This quickly
becomes a bottleneck, as manual analysis cannot
keep up with the rate at which data are generated.
Automatic analysis becomes imperative in order to
analyze the vast amount of data that are generated in
high-throughput experiments.

The need for automatic and scalable tools provides
unique opportunities to apply cutting-edge tech-
niques in computer science and AI to accelerate the
materials discovery process. We developed Phase-
Mapper, a comprehensive platform that tightly inte-
grates XRD experimentation, AI problem solving,
and human intelligence (figure 1), to address this
computational challenge. In this platform, within
minutes, an AI solver provides for the phase-map-
ping problem physically meaningful results, which
are examined and potentially further refined by
materials scientists interactively and in real time. In
addition, the results of Phase-Mapper can be used to
further inform future experimental designs. The
demixing algorithm is a cornerstone of the Phase-
Mapper platform. We have developed a novel solver
called AgileFD, which is based on convolutive non-
negative matrix factorization (cNMF). Nonnegative
matrix factorization (NMF) is commonly used in
applications such as computer vision and topic mod-
eling (Lee and Seung 2001), and cNMF extends this
method to convolutive mixtures used in blind source
separation of audio signals and speech recognition
(Smaragdis 2004; Mørup and Schmidt 2006). AgileFD
features a computationally efficient, gradient-based
search method using lightweight iterative updates of
candidate solutions. In addition, AgileFD integrates
functionalities beyond cNMF. The extensions of
AgileFD, described here, include incorporation of
constraints to encode both human input, which cap-
italizes on a researcher’s knowledge of a particular
data set, and prior knowledge of the problem related
to the underlying physics of phase diagrams. This, as
demonstrated below, can be critical in obtaining
physically meaningful solutions. In developing the
Phase-Mapper platform, careful attention has been
given to delivering a rich suite of capabilities while
maintaining solver convergence times within min-
utes, which enables researchers to interact with the
solver to refine the solution.

We evaluate Phase-Mapper and several solvers that
were proposed in recent years. In general, we observe
that the solutions found by AgileFD and its variants
better match the ground truth. A vanilla NMF
approach performs poorly, as it fails to capture phys-
ical constraints. Conversely, constraint program-
ming–based approaches are able to enforce some of
the physical constraints but scale poorly. We show
empirically that AgileFD with its extensions is able to
find solutions that are close to the physical reality. 

We first encountered the phase-mapping problem
seven years ago as part of our computational sustain-
ability (Gomes 2009) effort to address pressing prob-
lems in renewable energy. Phase-Mapper is the cul-
mination of our work since then, in close
collaboration with experts in materials science. Over
the course of this collaboration, we have made
important contributions to the formal characteriza-
tion of this problem, developed several synthetic
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instance generators, and developed several algo-
rithms with theoretical and practical guarantees. We
have also continuously developed tools to share
experimental instance data, results, and solution
visualizations with our collaborators throughout (Le
Bras et al. 2011; Ermon et al. 2012; Le Bras et al. 2014;
Ermon et al. 2015; Xue et al. 2015). Phase-Mapper is
our most successful tool to date in this area: it
removes many of the practical barriers to the use of
previous methods, including better scalability, run-
times suitable for interactive use, and ease of access.

Phase-Mapper has been used at the Department of
Energy’s Joint Center for Artificial Photosynthesis
(JCAP) to run hundreds of phase-mapping solutions
in the JCAP materials discovery pipeline. Prior to
Phase-Mapper, the difficulty of interpreting X-ray dif-
fraction data limited JCAP scientists’ ability to take
full advantage of resources to conduct high-through-
put experiments. Since the deployment of Phase-
Mapper, thousands of X-ray diffraction patterns have
been processed and the results are yielding discovery
of new materials for energy applications. These are
exemplified by the discovery of a new family of met-
al oxide light absorbers in the previously unsolved
Nb-Mn-V oxide system, which is provided here as a
case study and is an illustrative example of the
importance of encoding physical constraints to
obtain physically meaningful phase diagram solu-
tions. We believe Phase-Mapper will lead to further
developments in high-throughput materials discov-
ery by providing rapid and critical insights into the
phase behavior of new materials. 

Phase-Mapper: AI for 
Materials Discovery 

An experimentation pipeline for rapidly synthesiz-
ing, characterizing, and identifying new materials is
referred to as high-throughput materials discovery or
combinatorial materials discovery. In this pipeline, a
handful of elements are deposited together on a two-
dimensional substrate, so that different locations on
the substrate receive varying proportions of the ele-
ments. This smooth variation in elemental composi-
tion across the substrate gives rise to the forming of
a discrete set of materials, each of which is present in
particular regions of the substrate. 

The deposition process is analogous to atomic
spray paint, as mentioned earlier. Imagine red, green,
and blue spray paint being simultaneously sprayed
onto a surface (or wafer) with each color source
placed at the vertex of an equilateral triangle. Near
these vertices, the deposited color appears simply
red, green, or blue, and throughout the area of the
triangle a continuum of the possible colors are
obtained, where each color on the spectrum exists at
a unique point on the wafer. In the same manner, the
deposited materials “library” contains a broad spec-
trum of compositions (given the starting elements),

and the atoms in different composition regions may
arrange in a unique way to form a unique “phase”
whose properties differ from other materials, even
other compositions and phases formed from the
same elements. It is the hope that one of these new
materials will have a composition and phase that
exhibit the desired properties, and to fully under-
stand the composition-phase-property relationships,
the full phase map must be solved. 

In the libraries being studied, the new materials are
typically crystalline, meaning that at the atomic scale
atoms are arranged in particular lattice structures,
and the phase noted earlier is described by the sym-
metry and composition of the lattice structure. On a
larger length scale, typically 5 to 500 nm, the lattice
structure may alternate between two or three differ-
ent structures, constituting a mixed-phase material.
Each phase and phase mixture can exhibit unique
properties, creating the need for materials scientists
to understand, for each material library, how to cate-
gorize each material in the library (on the wafer) in
term of its phase mixture 

What data should materials scientists look at to
determine the crystal structures? An indirect way of
probing the microscopic structure is through X-ray
diffraction. When X-rays are directed against a crys-
tal, atomic layers will reflect the light; and for specific
angles determined by the spacing between atomic
layers, this reflected light will interfere constructive-
ly, giving rise to a strong signal. Thus, by scanning
through all angles and measuring the reflected light,
materials scientists are able to infer the structure of

Figure 1. The Phase-Mapper Platform.

The Phase-Mapper platform integrates experimentation, AI problem solv-
ing, and human feedback into a platform for high-throughput materials dis-
covery.
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the atomic layers without any microscopic measure-
ments. This process is done for different points on a
single wafer and because this process is fast when
using synchrotron sources that provide a large flux of
X-rays, materials scientists can rapidly characterize
hundreds or thousands of materials a day using X-ray
diffraction. An example of the apparatus for taking
these XRD measurements can be seen in figure 2.

Phase Mapping
A key challenge in high-throughput materials dis-
covery is to solve the phase-mapping problem, which
identifies the characteristic XRD patterns of the
materials (or basis patterns or crystal structures of the
materials) that demix the XRD signals from the high-
throughput experiments, some signals of which may
be pure in that they represent one phase, while oth-
ers are a linear combination of the pure phases. A
visual description of the phase-mapping problem can
be seen in figure 3. 

Mathematically, the measured XRD pattern in the
j-th sample point can be characterized by a one
dimensional signal Aj(q). The scattering vector mag-
nitude (q) is a monotonic transformation of the dif-
fraction angle, and is directly related to the spacing
of atoms in a crystal. The phase-mapping problem is
to find a small number of phases W1(q),…, WK(q),
and their corresponding activation coefficients hij,
such that the XRD patterns at each sample point can
be explained by a linear combination of phases:

(1)
Aj q( ) � hijWi

i=1

K

� �ij ,q( )

The physical process of alloying complicates the lin-
ear combination by introducing additional scaling
factors λij. Alloying typically can be approximated by
a multiplicative scaling of the XRD pattern of a
specific phase in the q domain; we also refer to this
process as peak shifting. We use the term Wi(λij,q) to
allow for the phases to scale slightly according to
parameter λij at each sample point. In addition to
peak shifting, there are a number of other constraints
on the solution of the phase-mapping problem, aris-
ing from the fact that the solution must describe a
system constrained by the laws of physics. One
important precept is the Gibbs phase rule, which lim-
its the number of phases present to at most k phases
per sample point, in a system involving k elements.
Therefore, in a k-element system, no more than k
coefficients among hij for fixed j may be nonzero.
Additionally, feasible spatial variation of hij by com-
position, as well as the shapes that each Wi may take,
are constrained by the relevant physics.

Fundamentally novel techniques are required to
solve the phase-mapping problem quickly and accu-
rately. Historically, the phase-mapping problem has
been solved by hand, which can take days or months
for a single system, and has become the bottleneck of
the entire materials discovery workflow. A number of
automatic techniques have been developed in recent
years, which can be broadly grouped into clustering,
constraint reasoning, and factor decomposition
approaches. Proposed clustering methods such as
hierarchical clustering (Long et al. 2007), dynamic
time warping kernel clustering (Le Bras et al. 2011),
and mean shift theory (Kusne et al. 2014) produce
maps of phase regions, but fail to resolve mixtures or
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Figure 2. Apparatus for Taking XRD Measurements.

To the left is an image of the X-ray diffraction apparatus being used to characterize a composition library in the high-through-
put experiment. On the right is an illustration of X-ray diffraction. Incoming X-rays hit the composition sample. They then dif-
fract and are detected by the XRD detector. 
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identify basis patterns, and do not necessarily pro-
duce results consistent with physics. Constraint rea-
soning approaches, including satisfiability modulo
theory (SMT) methods (Ermon et al. 2012), can pro-
vide physically meaningful results, but depend heav-
ily on effective preprocessing, such as peak identifi-
cation, and are computationally intensive.
Approaches based on nonnegative matrix factoriza-
tion (Long et al. 2009) are computationally efficient,
but generally perform poorly when peak-shifting
phenomena are present, failing to produce physical-
ly meaningful solutions. CombiFD (Ermon et al.
2015) is another factor decomposition approach that
uses combinatorial constraints to simultaneously
enforce some of the physical rules and accommodate
peak shifting, but requires solving a combinatorial
problem in each descent step, and is therefore com-
putationally expensive and does not enforce all the
physics constraints.

Here, we describe Phase-Mapper, an AI platform
for rapidly solving the phase-mapping problem, inte-
grating three key components: (1) cutting-edge AI
solvers, (2) human intelligence and feedback, and (3)
high-throughput physical experiments. These com-
ponents form an integrated process (see figure 1).

Phase-Mapper features novel solver AgileFD as a
key component of the platform. Motivated by con-
volutive NMF, AgileFD includes a set of lightweight
updating rules, and therefore a very fast gradient
descent process. AgileFD is flexible, allowing for the
incorporation of additional contraints, as well as
human feedback through refinement. AgileFD can
also run autonomously, producing physically mean-
ingful solutions. 

Phase-Mapper also provides tools for data explo-
ration, visualization, and configuration that allow
human experts as well as laypeople to analyze and
improve solutions.

Phase-Mapper’s solutions, obtained by the inter-
action between solvers and human users or
autonomously, can also shed light on the develop-
ment of new physical experiments. For example, the
results can be incorporated into an active learning
system, specifying regions of composition space to
sample at higher resolution.

AgileFD: A Novel 
Phase-Mapping Solver

The Phase-Mapper platform features the AgileFD
solver for the phase-mapping problem. AgileFD uses
iterative updates of candidate solutions that are sig-
nificantly faster than previously proposed methods.
Human experts can interact with the algorithm in
real time, and this speed is due to an efficient prob-
lem representation. Let the XRD patterns for all sam-
ples be represented by a matrix A, where each col-
umn corresponds to one sample point and each row
corresponds to Aj(q) for a particular value of q. Under

the assumptions of no noise and no shifting, mean-
ing that λij = 1 for all i and j, describing A as a linear
combination of a few basis patterns Wi(q) is equiva-
lent to factoring A as a product of two matrices W
and H:

(2)

Here, R denotes the approximate reconstruction of A.
In this formulation, the columns of W form a set of
basis patterns Wi(q), and the columns of H corre-
spond to the values hij in equation 1. We enforce
nonnegativity for W and H, which is required for the
solutions to be physically meaningful. Previous
approaches to solve the phase-mapping problem
based on NMF have been unsuccessful in handling
peak shifting, where λij ≠ 1. The first contribution of
AgileFD is to circumvent the shifting problem by a
log space resampling. Under the variable transforma-
tion q into log q, our signal becomes Wi(log q). More
importantly, the shifted phase Wi(log λq) becomes
Wi(log λ + log q), which transforms the multiplicative
shift in the q domain into a constant additive offset.
This allows the problem to be formulated in terms of
convolutive nonnegative matrix factorization. After
this variable substitution, we discretize the values of
allowed λ and interpolate the signals at the corre-
sponding geometric series of q values. The problem
can then be written:

(3)

With the columns of W representing the basis pat-

A � W�m

m=1

M

� �Hm = R

A �W �H = R
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Figure 3. An Illustration of the Phase-Mapping Problem. 

Given a material system with XRD data read at discrete points, find a set of
basis phases, such that every point’s XRD data can be made by a linear com-
bination of the basis phases. Here, the left image is the original data, the
right image is the found basis phases, and the middle image represents how
much of a particular phase (the “phase concentration”) is present at each
data point along with the composition-dependent shifting.
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terns, W↓m is the result of shifting the rows of the W
matrix down m rows, and filling the displaced rows
with zeros. This represents the basis patterns with a
constant offset in the log q domain, and is equivalent
to the original multiplicative shift in the q domain.
The columns of Hm act as the activation of basis pat-
terns for the basis patterns shifted down m units.
Note that when M = 1, this formulation is equivalent
to NMF, aside from the log transformation.

We can think of AgileFD as a family of algorithms
that can be adapted to use different loss functions,
regularization, and certain imposed constraints.
Equation 2 is adapted from convolutive NMF, which
was first proposed to analyze audio signals
(Smaragdis 2004). The phase-mapping problem dif-
fers from previous applications of cNMF for blind
source separation as the log q domain is substituted
for the time domain, and each source (phase) is
expected to appear at most once per sample with a
relatively small offset. As in cNMF, AgileFD uses a gra-
dient descent approach to fit W and H. When a gen-
eralized Kullback-Leibler (KL) divergence is used in
the objective function, gradient updates can be writ-
ten multiplicatively, and are applied iteratively until
convergence. See Xue et al. (2017) for further details.

Lightweight Update Rules 
AgileFD’s linear gradient update rules solutions typi-
cally converge within minutes. This is orders of mag-
nitude faster than CombiFD, which uses a similar
problem formulation but with combinatorial con-
straints explicitly enforced globally, using a mixed-
integer programming (MIP) representation. This
increased efficiency of AgileFD enables high-through-
put analysis and also makes it possible for a human to
interact with the system in almost real time.

Further Extensions of AgileFD 
for Materials Discovery 
The ultimate aim of the phase-mapping problem is
to find a physically meaningful decomposition of the
signal. In the next few sections, we provide a number
of novel modifications to the basic AgileFD algo-
rithm, in order to impose prior knowledge or addi-
tional constraints derived from user interpretation of
a proposed solution. 

AgileFD with Frozen Values
In the Phase-Mapper platform, the user is provided
with the opportunity to freeze individual values in
the W and H matrices. For example, a user might
specify a known pattern or part of a previous solution
as a basis pattern a priori, freezing the corresponding
row or part thereof of W. Or the user might specify
that a certain set of samples contain only a single
phase and set the corresponding H values to zero. The
result is interactive, iterative matrix factorization.

Custom Initialization 
By initializing basis patterns or coefficients to values
close to the expected solution, rather than random
values, the user can direct the search to the correct
solution space. We allow the user to specify basis pat-
terns that can be taken from previous solutions, from
data samples, or be provided manually, to use as an
initial value. Similarly, initial values for the activa-
tion matrix can be specified.

Sparsity Regularization 
Sparse solutions are more consistent with the under-
lying physics and are also usually more easily inter-
preted. The Phase-Mapper system provides the
option to introduce a soft penalty term for sparsity in
H, which can vary by index according to a human
expert’s preferences. 

The Gibbs Phase Rule 
In general, correct solutions to the phase-mapping
problem should follow the Gibbs phase rule, which
specifies that the number of observed phases at a giv-
en chemical composition is no more than the num-
ber of chemical elements Nel:

(4)

Here, Ii,j is an indicator of whether phase i is present
at sample location j. Materials scientists might also
know a priori, or infer from previous proposed solu-
tions, that certain regions contain fewer phases than
the usual limit.

Such combinatorial constraints cannot be encod-
ed directly in the update rules of AgileFD, which has
been used in previous methods such as CombiFD.
However, these encodings result in a slow update
process, as we have to solve a MIP problem in each
iteration. As a novel routine, we apply the Gibbs
phase rule by first solving the relaxed problem, then
choose the best values to set to zero in H, and then
refine the solution by applying the update rules until
convergence. Because the update rules are multi-
plicative, the zeroed values will remain zero.

The value to set to zero in H is independent for
each sample point j. This can be solved greedily if a
faster solution is desired, or using a MIP formulation,
which results in a small MIP program, or successive
rounds of constraints and refinement, if a more pre-
cise solution is desired with a not much longer wait
time. In addition, in the presence of alloying, the
number of possible phases is further reduced by one.
This alloying rule can also be captured with a small
MIP program. These extensions are particularly use-
ful when the unconstrained algorithm recovers a
solution that is nearly correct except for relatively
small violations of phase limits. See details in Bai et
al. (2017).

Ii ,j
i

� � Nel
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Phase-Mapper: A Human-
Machine Integrated Platform

In this section, we present the Phase-Mapper plat-
form workflow, which includes visualizing and ana-
lyzing an instance file, setting the solver framework,
analyzing the solution, and using that analysis to
update the solver framework. The design objectives
were simple: create a practical application that seam-
lessly connects a visualization system with a power-
ful solver that allows for interactive and large-scale
use. The main features of Phase-Mapper are the visu-
alization tools and the solver interface. The interface
of the application can be seen in figure 4.

With Phase-Mapper, both the input materials sys-

tems and generated solutions can be visualized in the
same application. When an instance file of a materi-
als system is uploaded to the system, the visualizer
will generate a composition map, which illustrates
the varying compositions of elements for all sample
points. The user can freely inspect the XRD patterns
of each sample point, as well as the heatmap of XRD
patterns for a slice of sample points. A slice heatmap
example is shown in the top left plot of figure 4,
where a selected slice is indicated by the red data
points. The heatmap plot on the top right of figure 4
represents the XRD patterns of the sample points in
the slice.

When the solution files are loaded into the appli-
cation, either uploaded by the user or generated by
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Figure 4. Screenshot of the Phase-Mapper Web Application.

Displayed in the top left is the Nb-Mn-VO system in composition space. Each dot corresponds to an XRD measurement. The dots high-
lighted in red correspond to selected XRD measurements. The top right plot displays the heatmap of the selected data points’ XRD patterns,
that is, it visualizes the XRDs for all red sample locations in the top left panel. The bottom left plot shows the basis phases found in the
loaded solution of a particular data point. The bottom right plot shows the phase fields for the system. 



the solver, two new plots are generated: (1) the basis
patterns that were found as solutions and (2) a com-
position map displaying the mixture proportions.

Connection to Solver 
The solving feature of Phase-Mapper enables users to
interact with the AI solver behind the scenes. The
user can specify many solver parameters, such as how
much to enforce sparsity, how many phases the solu-
tion should have, and how much shift between basis
patterns the solver should allow. The user can also
specify initial or frozen values to use as basis patterns.
Incorporating user inputs helps the solver improve
efficiency and accuracy. We provide tools for expert
users to start the solver off closer to a solution, or to
distort the solution space so the solver finds a more
accurate solution.

Algorithm Effectiveness
In this section, we evaluate many solvers that were
proposed in recent years against our Phase-Mapper
system. We tested NMF (implemented as AgileFD
with M = 1), AgileFD, AgileFD with sparsity regular-
ization (AgileFD-Sp), AgileFD with sparsity and the
Gibbs phase rule enforced (AgileFD-Sp-Gibbs), and
CombiFD (Ermon et. al. 2015). We generated syn-
thetic ternary metallic systems using data provided
by the Materials Project (Jain et al. 2013), which pro-
vides crystal structure information and energy of for-
mation using density functional theory for each
phase. We applied a stylized model of solid solubili-
ty and used structure interpolation to simulate mod-
ified phase diagrams that include the additional
degrees of freedom from alloying. We calculated XRD
patterns for each modified constituent, including
their interpolated structures, using pymatgen (Ong et
al. 2013).

The quality of a solution is judged by how well
each sample’s reconstructed signal matches the cor-
responding measured signal. We find the permuta-
tion of the phases in the solution to best match the
ground truth. In general, we observe that the solu-
tions found by AgileFD (including AgileFD-Sp and
AgileFD-Sp-Gibbs) better match the ground truth
when compared with NMF and CombiFD. NMF
underperforms because it cannot model peak shift-
ing. Despite the fact that CombiFD also captures
some of the physical constraints, it does not scale
well because it formulates the physical constraints
using mixed-integer programming. AgileFD with
extensions (AgileFD-Sp and AgileFD-Sp-Gibbs) out-
perform vanilla AgileFD. They are able to find solu-
tions that better match the physical constraints. 

Illustrative Example: Discovery of 
Nb-V-Mn Oxides Light Absorbers 
for Energy Applications
The integration of the rapid solver with visualization
tools enables materials scientists to interact with the

data in a variety of ways. The web-accessible visuali-
zation tools enable rapid data exploration by materi-
als scientists, which empowers materials scientists to
inject their expert knowledge into the solution, for
example by specifying the number of phases, the
extent of alloying-based peak shifting, or the known
existence of a phase in a certain composition region.
In this way, Phase-Mapper can run in unsupervised
or semisupervised modes per the availability of prior
knowledge. To demonstrate the phase-mapping capa-
bilities and the importance of the Gibbs constraint,
figure 5 contains solutions for the phase map of 317
XRD patterns in the Nb-V-Mn oxide composition
space using M = 10 shifted versions, which corre-
sponds to approximately 2 percent alloying-based
peak shifting. Although the phase behavior of bina-
ry subcompositions (for example, Nb-V oxides) has
been previously studied, the ternary compositions
are being explored for the first time to discover solar
light absorbers for energy applications. Materials
researchers were unable to obtain a meaningful phase
diagram using manual analysis of this data set, even
with advanced visualization tools, primarily because
there are a number of phases with somewhat similar
basis patterns, and most basis patterns contain
dozens of peaks, yielding a collection of XRD pat-
terns that are rich in information, but that exceed
human conceptualization. 

We show in the paper by Suram et al. (2016) that
without accounting for alloying-based peak shifting,
solutions are not meaningful in a number of ways,
most notably the basis patterns do not correspond to
individual phases because the intensity for a phase
whose patterns shift across the data set is spread out
over multiple basis patterns, creating phase-mixed
basis patterns that are as difficult to interpret as the
mixed-phase patterns in the raw data. The overlap-
ping features in the basis patterns amplify this prob-
lem and result in its persistence even when alloying-
based peak shifting is taken into account. When two
phases have overlapping features in their basis pat-
terns and the phases coexist in a range of composi-
tions, approximately equal data reconstructions can
be obtained using basis patterns that each contain
one phase or that each contain a mixture of phases.
To empower the algorithm to overcome this degen-
eracy in phase map solutions, we additionally apply
the Gibbs constraint on the number of phases that
can coexist in each composition sample. Figure 5
shows the basis patterns without (top) and with (bot-
tom) application of this constraint, with one basis
pattern on top highlighted to show that it contains a
mixture of phases. So although this constraint is
applied on the activations of the basis patterns, it
indirectly makes the basis patterns more physically
meaningful. The Phase-Mapper solution also exhibits
excellent composition space connectivity for each
phase concentration map, as expected for equilibri-
um phase behavior, and it exhibits systematic com-
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positional variation in the shift parameter λ, demon-
strating alloying within phases 3, 5, and 6. Incorpo-
rating both an alloying-based peak shifting model
and the Gibbs phase constraint resulted in basis pat-
terns and phase concentration maps that are physi-
cally meaningful, which is emblematic of a general
strategy for AI-enhanced scientific discovery —
injecting scientific knowledge where possible has
trickle-down effects that result in scientifically mean-
ingful solutions.

In addition to the broader implications of our
algorithms for scientific discovery, the solutions in
figures 5 and 6 are also emblematic of broader trends
in materials science. As new technologies are con-
ceived, new materials are needed, and often these
materials are required to simultaneously exhibit a
variety of properties and perform a variety of func-
tions. At JCAP, researchers are pursuing the discovery
of several materials, including photoanodes, which
are materials that must absorb sunlight and harness
its energy to oxidize water into oxygen, freeing pro-
tons and electrons to be utilized in fuel synthesis.
Metal oxides, such as the compositions in the Nb-V-
Mn oxide composition library discussed earlier, are
excellent photoanode candidates because of their
generally good stability under these conditions.
Among the challenges in identifying and tailoring
metal oxides to be effective photoanodes is the gen-
eral difficulty in tuning their optical properties. The
band gap energy of a given material dictates the
range of sunlight that can be utilized by the materi-
al, and although materials with a variety of band

gaps are available in the photovoltaic and light-emit-
ting diode fields, such band gap tuning is quite rare
in metal oxides. Pattern 4 in figure 5 corresponds to
the MnV2O6 crystal structure, and as indicated by the
activation map for this phase, it exists over a range of
compositions where the peaks shift due to alloying.
By combining this data with band gap measure-
ments, figure 6 shows that within this single phase,
the band gap can be tuned from approximately 1.9 to
2.1 eV. At the higher band gap range, the materials do
not absorb orange or red light, but lowering the band
gap enables these absorptions and thus increases the
potential efficiency of the material. This discovery of
alloying-based band gap tuning in this crystal struc-
ture is one component of the much broader portfo-
lio of materials science needed to design and create
photoanode materials. More generally, the discovery
of a material for new technology is typically the cul-
mination of a suite of smaller discoveries, and with
AI algorithms such as those provided by Phase-Map-
per, these discoveries are being accelerated and com-
piled to create a more comprehensive understanding
of the underlying science, thus changing the arc of
scientific discovery.

Conclusion
In this article, we show that the combination of
high-throughput experimentation, AI problem solv-
ing, and human intelligence can yield rich scientific
discoveries, with an application in materials science.
A major, critically missing component of the high-
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Figure 5. Solutions for the Phase Map of 317 XRD Patterns in the Nb-V-Mn Oxide Composition Space.

The 317 XRD patterns measured in the Nb-V-Mn oxide composition space were analyzed to produce phase-mapping solutions. On top, the
six basis patterns obtained using AgileFD (blue) are shown along with the peak pattern (red sticks) for the phases identified by materials sci-
entists. For pattern 2, this phase could be identified only after applying the Gibbs phase constraint, which, even though applied only to the
basis pattern activations, results in the procurement of more meaningful (phase-pure) basis patterns. The middle row shows the six basis
patterns obtained with AgileFD using Gibbs phase constraints (black), with the bottom row showing the composition map of activations
of each basis pattern. There is a point for each of the 317 composition samples, with point size corresponding to the phase concentration
and color corresponding to the alloying-based peak shifting. Nonshifted (nonalloyed) samples show as black.
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throughput materials discovery pipeline is the abili-
ty to rapidly solve the phase map identification prob-
lem, which involves the determination of the under-
lying phase diagram of a family of materials from
their composition and structural characterization
data. To address this challenge, we developed Phase-
Mapper, a comprehensive platform that tightly inte-
grates XRD experimentation, AI problem solving,
and human intelligence. The AI solvers in Phase-
Mapper provide high-quality solutions to the phase-
mapping problem within minutes. These solutions
can then be examined and further refined by materi-
als scientists interactively and in real time. We have
developed a novel solver, AgileFD, that features light-
weight iterative updates of candidate solutions and a
suite of adaptations to the multiplicative update
rules. In particular, we have developed the ability to
incorporate constraints that capture the physics of
materials as well as human feedback, enabling func-
tionalities well beyond traditional demixing tech-
niques and producing physically meaningful solu-
tions. Phase-Mapper has been deployed at the
Department of Energy’s Joint Center for Artificial
Photosynthesis for materials scientists to solve a wide
variety of real-world phase diagrams. Since the
deployment of Phase-Mapper, thousands of X-ray
diffraction patterns have been processed and the
results are yielding the discovery of new materials for
energy applications, as exemplified by the discovery

of a new family of metal oxide solar light absorbers,
among the previously unsolved Nb-Mn-V oxide sys-
tem, which is provided here as an illustrative exam-
ple. We believe Phase-Mapper will lead to further
developments in high-throughput materials discov-
ery by providing rapid and critical insights into the
phase behavior of new materials.
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Figure 6. Band-Gap Tuning.

The noted composition region (a) of the Nb-V-Mn oxide composition library contains high-phase concentration of phase 4 from figure 5.
This basis pattern was matched to the MnV2O6 structure and in (b) the composition points are plotted using the alloying-based shift param-
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determines the amount of solar light that can be absorbed. As the material composition changes, the composition in this phase changes
and causes the volume of the phase and the band gap to change. This type of “band gap tuning” is quite rare in metal oxides, and this dis-
covery was enabled by the detailed phase map provided by Phase-Mapper.
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