
While the amount of data stored in current informa-
tion systems continues to grow, and the processes
making use of such data become more and more

complex, extracting knowledge and obtaining insights from
these data, as well as governing both data and the associated
processes, are still challenging tasks. The problem is compli-
cated by the proliferation of data sources and services both
within a single organization and in cooperating environ-
ments. Moreover, if we add to the picture the (inevitable)
need for dealing with big data, and consider in particular the
two v’s of volume and velocity, we can easily understand why
effectively accessing, integrating, and managing data in com-
plex organizations is still one of the main issues faced by the
information technology (IT) industry today. Indeed, it is not
surprising that data scientists spend a comparatively large
amount of time in the data preparation phase of a project,
compared with the data mining and knowledge discovery
phase. Whether you call it data wrangling, data munging, or
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Managing Data Through 
the Lens of an Ontology

Maurizio Lenzerini

n Ontology-based data management
aims at managing data through the lens
of an ontology, that is, a conceptual rep-
resentation of the domain of interest in
the underlying information system.
This new paradigm provides several
interesting features, many of which
have already been proved effective in
managing complex information sys-
tems. This article introduces the notion
of ontology-based data management,
illustrating the main ideas underlying
the paradigm, and pointing out the
importance of knowledge representation
and automated reasoning for addressing
the technical challenges it introduces.



data integration, it is estimated that 50 to 80 percent
of a data scientist’s time is spent on collecting and
organizing data for analysis.1 If we consider that in
any complex organization, data governance is also
essential for tasks other than data analytics, we can
conclude that the challenge of identifying, gather-
ing, retaining, and providing access to all relevant
data for the business at an acceptable cost is huge
(Bernstein and Haas 2008).

The aforementioned considerations are valid even
for very simple information systems, as the following
example scenario illustrates. Figure 1 shows a portion
of Cust table, a relational table contained in a real
information system. The table maintains informa-
tion about the customers of an organization, where
each row stores data about a single customer. The first
column contains the customer code, with the provi-
so that if the code is positive, then the record refers
to an ordinary customer, and if it is negative, to a spe-
cial customer. If the code is nonnumeric, then the
customer type is unknown. Columns 2 and 3 specify
the time interval of validity for the record. ID_GROUP
indicates the group the customer belongs to (if the
value of FLAG_CP is “S,” then the customer is the
leader of the group; if FLAG_CF is “S,” then the cus-
tomer is the controller of the group). FATTURATO is
the annual turnover (but the value is valid only if
FLAG_FATT is “S”). Obviously, each notion mentioned
previously (like “special,” “ordinary,” “group,”
“leader,” etc.) has a specific meaning in the organi-
zation, and understanding such meaning is crucial if
one wants to correctly access or manage the data in

the table and extract useful information out of it.
Similar rules hold for the other 47 columns that, for
lack of space, are not shown in the figure.

Those who have experience with complex data-
bases, or databases that are part of large information
systems, will not be surprised to see such complexity
in a single data structure. Now, think of a database
with many tables of this kind, and try to imagine a
poor client accessing such tables for data analysis.
The problem is even more severe if one considers that
information systems in the real world use different
(often many) heterogeneous data sources, both inter-
nal and external to the organization. While many are
the issues raised by this problem, I would like to go
into more detail on some of them.

Accessing and Querying Data
As observed by De Giacomo et al. (2018), although
the initial design of a collection of data sources might
be adequate, corrective maintenance actions tend to
reshape these sources into a form that diverges from
the original structure. Also, they are often subject to
changes so as to adapt to specific, application-depen-
dent needs. Analogously, applications are frequently
modified to accommodate new requirements, and
guaranteeing their seamless usage within the organi-
zation is costly. The result is that the data stored in
different sources and the processes operating over
them tend to be redundant, mutually inconsistent,
and obscure for large classes of users. So, query for-
mulation often requires interacting with IT experts
who know where the data are and what they mean in
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Figure 1. Fragment of the Cust_table Table.
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the various contexts, and can therefore translate the
information need expressed by the user into appro-
priate queries. It is not uncommon to see organiza-
tions where this process requires domain experts to
send a request to the data management staff and wait
for several days, or even weeks, before they receive a
(possibly inappropriate) query in response. In sum-
mary, it is often exceedingly difficult for end users to
single out exactly the data that are relevant for them,
even though they are perfectly able to describe their
requirement in terms of business concepts.

Data Quality
It is often claimed that data quality is one of the most
important factors in delivering high-value informa-
tion services (Fan and Geerts 2012). However, the
aforementioned scenario poses several obstacles to
the modest goal of checking data quality, let alone
achieving a good level of quality in information
delivery. How can we possibly specify data quality
requirements, if we do not have a clear understand-
ing of the semantics that the data should bring? The
problem is sharpened by the need for connecting to
external data, originating, for example, from busi-
ness partners, suppliers, clients, or even public
sources. Again, judging the quality of external data,
and deciding whether to reconcile possible inconsis-
tencies or simply to add such data as different views,
cannot be done without a deep understanding of the
meaning of such data.

Open Data
Note that understanding and documenting the
semantics of data is also crucial for opening data to
external organizations. The demand for greater open-
ness is irresistible nowadays. In many aspects of our
society, there is growing awareness of and consensus
on the need for data-driven approaches that are
resilient, transparent, and fully accountable. But to
achieve a data-driven society, it is necessary that the
data needed for public goods be readily available
(Wessels et al. 2017). Thus, it is not surprising that in
recent years both public and private organizations
have been faced with the issue of publishing open
data, in particular with the goal of providing data
consumers with suitable information to capture the
semantics of the data they publish. But, again, asso-
ciating a reasonably well-structured description of
open data sets is very difficult if we do not have effec-
tive tools for documenting the meaning and the
usage of the data sources from which such data have
been extracted.

Process and Service Specification
Information systems are crucial artifacts for running
organizations; and designing, documenting, manag-
ing, and executing processes is an important aspect
of information systems. However, specifying what a
process or service does, or which characteristics it is

supposed to have, cannot be done correctly and com-
prehensively without a clear specification of which
data the process will access and how it will possibly
modify or update such data. The difficulties of doing
that in a satisfactory way come from various factors,
including the lack of modeling languages and tools
for describing process and data holistically. However,
the problems related to the semantics of data that we
discussed previously undoubtedly make the task
even harder (Berardi et al. 2003; Bagheri Hariri et al.
2013).

The Notion of an Ontology-Based
Data Management System

All the previous observations show that a unified
access to data, a comprehensive methodology for
data preparation, and an effective governance of
data-oriented processes and services are extremely
difficult goals to achieve in modern information sys-
tems (Bernstein and Haas 2008). We argue that the
ontology-based data management (OBDM2) para-
digm (Lenzerini 2011) is a promising direction for
addressing these challenges. The key idea of OBDM is
to apply suitable techniques from the area of knowl-
edge representation and reasoning in artificial intel-
ligence for a new way to achieve data governance
and integration, based on the principle of managing
heterogeneous data through the lens of an ontology.
Indeed, OBDM resorts to a three-level architecture
comprising the ontology, the data sources, and the
mapping between the two. First, the data layer is con-
stituted by the existing data sources that are relevant
for the organization; second, the ontology is a declar-
ative and explicit representation of the domain of
interest for the organization, specified by means of a
formal and high-level description of both its static
and its dynamic aspects; and third, the mapping is a
set of declarative assertions specifying how the avail-
able sources in the data layer and the computational
resources used in the organization relate to the ontol-
ogy.

OBDM can thus be seen as a sophisticated form of
information integration (Lenzerini 2002; Calvanese
and De Giacomo 2005; Doan, Halevy, and Ives 2012),
where the usual global schema is replaced by the con-
ceptual model of the application domain, formulat-
ed as an ontology. With this approach, the integrat-
ed view that the system provides to information
consumers is not merely a data structure accommo-
dating the various data at the sources, but a semanti-
cally rich description of the relevant concepts in the
domain of interest, as well as of the relationships
between such concepts. The distinguishing feature of
the whole approach is that users of the system are
freed from the details of how to use the data sources,
as they will express their needs (for example, a query)
in the terms of the concepts, the relations, and the
processes described in the domain model. The system



will reason about the ontology and the mappings,
and reformulate the needs in terms of appropriate
calls to services provided for accessing the data
sources. For the services expressed over the ontology
to be translated into correct and efficient computa-
tions over the data sources, techniques typical of
knowledge representation and automated reasoning
are crucial. Note, however, that OBDM introduces
new challenges to these areas. Indeed, while knowl-
edge representation techniques are often confined to
scenarios where the complexity resides in the rules
governing the application, in OBDM one faces the
problem of a huge amount of data in the data layer,
which poses completely new requirements for the
reasoning tasks that the system should be able to car-
ry out. For example, the notion of data complexity,
by which one measures the computational complex-
ity on the basis of the size of the data layer only, is of
paramount importance in OBDM.

From a more formal perspective, an OBDM speci-
fication 𝓘 is defined as a triple ⟨𝓞𝓢𝓜⟩, where 𝓞 is an
ontology, 𝓢 is a relational schema, called source
schema, and 𝓜 is a mapping from 𝓢 to 𝓞. In particu-
lar, 𝓞 represents intensional knowledge about the
domain, expressed in some logical language,3 and 𝓜
is a set of mapping assertions, again expressed in a
logical language, each one relating a query over the
source schema to a query over the ontology. 

An OBDM system is a pair (𝓙, 𝓓), where 𝓙 is an
OBDM specification and 𝓓 is a database for the
source schema 𝓢, called source database, for 𝓙. The
semantics of (𝓙, 𝓓) are given in terms of the logical
interpretations that are models of 𝓞, that is, that sat-
isfy all axioms of 𝓞 and all assertions in 𝓜 with
respect to 𝓓. The notion of mapping satisfaction
depends on the semantic interpretation adopted for

mapping assertions. Commonly, such assertions are
assumed to be sound, which intuitively means that
the patterns specified over the sources imply a set of
facts at the ontology level; in other words, data at the
sources give rise to instance assertions in the ontol-
ogy. Because of the logical nature of the domain
description represented by the ontology, and the
kind of mapping assertions considered, (𝓙,𝓓) is char-
acterized by a set of models, denoted with ModD (𝓙).

We end this section by illustrating a simple exam-
ple of an OBDM specification, referring in particular
to the application scenario mentioned earlier. We
will use the example in the next sections.

Source schema 𝓢: We assume that, beside the table
Cust_table illustrated in figure 1, we have another rela-
tional table available, called Inv_table, that stores pairs⟨C1,C2⟩ such that the customer with code C1 involved
customer with code C2 in a joint project. So, 𝓢 is con-
stitued by the relational schema {Cust_table, Inv_table}. 

Ontology 𝓞: A fragment of the domain ontology
expressed in graphical form is shown in figure 2. The
ontology sanctions that there are exactly two types of
customers, namely ordinary and special, so that every
customer is of one of these types. Also, the ontology
defines Involved as a relationship between customers.

Mapping 𝓜: The mapping, also shown in figure 2,
asserts that the Cust_table table is mapped to the con-
cepts Ordinary and Special, depending on the value of
the field CUC, while data in the Inv_table are mapped
to the relation Involved.

We obtain an OBDM system by pairing the previ-
ous specification with a specific 𝓢-database, that is, a
database coherent with the schema 𝓢 that assigns an
extension (set of tuples) to the tables Cust_table and
Inv_table.
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Figure 2. Example of OBDM Specification: Ontology and Mapping.

Customer

Ordinary Special

Involved
from Cust_table Ordinary(X)
where CUC ≥ 0

select CUC as X
from Cust_table Special(X)

select C1 as X, C2 as Y
from Inv_table

select CUC as X

where CUC < 0

Involved(X,Y)



Query Answering
In OBDM systems, the main service of interest is
query answering, that is, computing the answers to
user queries, which are queries posed over the ontol-
ogy. This process consists of returning what are
known as certain answers, that is, the tuples that sat-
isfy the user query in all the models in Mod D (𝓙).
Notice the difference with query answering in tradi-
tional databases. While a database can be seen as a
single model of a logical theory (see, for example,
Reiter 1984), query answering in OBDM faces the
problem of considering various models of the whole
system, and is therefore a form of reasoning under
incomplete information. It follows that query evalu-
ation in OBDM is much more challenging than clas-
sical query evaluation over a database instance, and
this complexity explains why automated deduction
techniques are very relevant in this context.

To better illustrate the point, we reconsider the
example of the previous section, and we assume that
in a specific 𝓢-database, -452901 and 124589 are two
values appearing the CUC field of Cust_table, and⟨124589,CCAAA⟩, ⟨CCAAA,-452901⟩ are two tuples
appearing in the Inv_table. Note that, by the mapping
assertions, the two tuples satisfy the predicate
Involved in the ontology. Now, consider a query to
check whether there exists an ordinary customer
who involved a special customer in a project,
expressed in logic as∃X∃Y Ordinary(X), Involved(X, Y), Special(Y)

If we evaluate the query simply by searching for the
corresponding pattern in the data, we come up with
the answer “false,” because we cannot find any pair
of elements to bind to the variables X, Y in such a
way that the pattern specified by the query is satisfied
in the data. However, if we consider the knowledge
expressed by the ontology, then we know that, in
every model of the ontology, the customer with code
CCAAA is either ordinary or special. For the models
where CCAAA is ordinary, the binding X → CCAAA, Y→ –452901 makes the query true, whereas for the
models where CCAAA is special, it is the binding X →
124589, Y → CCAAA that makes the query true. It fol-
lows that the certain answer to the query is “true.” 

What the previous example shows is that query
answering in OBDM may require reasoning by cases
on data (in the example, on the status of the cus-
tomer CCAAA) and that this reasoning is necessitated,
in particular, by the presence of certain representa-
tion patterns in the ontology (in the example, the
pattern is “every customer is either special or ordi-
nary”). It is not difficult to see that this need for rea-
soning by cases implies high computational com-
plexity in the size of the data, and, unfortunately, the
high cost does not seem to show up only in artifi-
cially constructed worst cases (see, for example,
Schaerf 1993). The conclusion is that OBDM is yet
another scenario where the trade-off between the

expressive power of the modeling language and the
complexity of reasoning is extremely relevant
(Levesque and Brachman 1985).

Indeed, from the computational perspective, query
answering depends on (1) the language used for the
ontology, (2) the language used to specify the queries
in the mapping, and (3) the language used for user
queries. As for the first aspect, many years of research
on description logics (Baader et al. 2003) has led to
specific proposals of ontology languages suitable for
OBDM. I want to briefly present one of the most suc-
cessful, that is, the one based on a family of DLs,
called DL-Lite4, first introduced in Calvanese et al.
(2004; 2005), which has also given rise to the OWL 2
QL profile5 of the web ontology language OWL, stan-
dardized by the W3C. More specifically, I refer to DL-
LiteA, which is able to capture essentially all features
of entity-relationship diagrams and UML class dia-
grams.6

As usual in DLs, DL-LiteA allows for representing
the domain of interest in terms of concepts, denoting
sets of objects and roles (or, relations), and denoting
binary relations between objects. In DL-LiteA, a con-
cept is either an atomic concept C (that is, a unary
predicate) or the projection ∃R or ∃R– of a role R on
its first or second component, respectively. A role can
be either an atomic role R or an inverse role R–, allow-
ing for a complete symmetry between the two direc-
tions. DL-LiteA also includes value attributes relating
objects in classes to domain values (such as strings or
integers). The ontology is modeled by means of
axioms that can express inclusion and disjointness
between concepts or roles and the (global) function-
ality of roles (with some restrictions on the interac-
tion between functionality and role inclusions to
ensure tractability). In table 1, we illustrate the con-
ceptual modeling constructs captured by DL-LiteA
assertions and provide also their meaning expressed
in first-order (FO) logic, where all variables are
implicitly universally quantified. Type 1 corresponds
to ISA/disjointness on concepts, type 2 to
domain/range specification for a role, type 3 to
mandatory participation in a role, type 4 to ISA/dis-
jointness on roles, and type 5 to functionality asser-
tion on a role. The DLs of the DL-Lite family, includ-
ing DL-LiteA, combined with specific languages for
mapping the specification previously mentioned,
have been designed so as to enjoy the first-order
rewritability (FO-rewritability) property: given a UCQ
q and an OBDM specification 𝓙 = ⟨𝓞𝓢𝓜⟩, it is possi-
ble to compile q, 𝓞, and 𝓜 into a new FO query q΄
formulated over 𝓢. Such query q΄ has the property
that, when evaluated over a database D for 𝓢, it
returns exactly the certain answers for q over the
OBDM system ⟨𝓘 , D⟩, for every data source D. Each
such q΄ is called an (FO-)perfect rewriting of q with
regard to 𝓙. Most of the proposed techniques (Cal-
vanese et al. 2007; Pérez-Urbina, Horrocks, and Motik
2009; Chortaras, Trivela, and Stamou 2011) to
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achieve FO-rewritability start from a CQ or a UCQ
(that is, a set of CQs) and end up producing a UCQ
that is an expansion of the initial query. These tech-
niques are based on variants of clausal resolution
(Leitsch 1997): every rewriting step essentially corre-
sponds to the application of clausal resolution
between a CQ among the ones already generated and
a concept or role inclusion axiom of the ontology.
The rewriting process terminates when a fix-point is
reached, that is, when no new CQ can be generated.

The results published by Calvanese et al. (2007)
and Poggi et al. (2008) show that, following the tech-
nique illustrated earlier, conjunctive query answering
is indeed first-order rewritable in DL-Lite, implying
that answering (unions of) conjunctive queries can
be reduced to query evaluation over a relational data-
base, for which we can rely on standard relational
DBMSs. This property also implies that CQ answering
is in AC0 (a subclass of LOGSPACE) in data complex-
ity. Indeed, this implication is an immediate conse-
quence of the fact that the complexity of the afore-
mentioned phase of query rewriting is independent
of the data source and that the final rewritten query
is an SQL expression. An important question is
whether we can further extend the ontology specifi-
cation language of OBDM without losing the nice
computational property of the query rewriting phase.
Calvanese et al. (2013) show that adding any of the
main concept constructors considered in description
logics and missing in DL-LiteA (for example, nega-
tion, disjunction, qualified existential restriction,
range restriction) causes a jump of the data complex-
ity of conjunctive query answering in OBDM, which
goes beyond the class AC0. This issue has been fur-
ther investigated by Artale et al. (2009). As for the
query language, we note that going beyond unions of
CQs is problematic from the point of view of
tractability, or even decidability. For instance, adding
negation to CQs causes query answering to become
undecidable (Gutiérrez-Basulto et al. 2015).

This basic technique, introduced by Calvanese et
al. (2007), has been the subject of many investiga-
tions in the last decade, with the goal of improving
its performance (Pérez-Urbina, Horrocks, and Motik
2009; Chortaras, Trivela, and Stamou 2011;
Kontchakov et al. 2011; Di Pinto et al. 2013; Gottlob
et al. 2014a) and extending its applicability (Lenzeri-
ni, Lepore, and Poggi 2016). More generally, the issue
of designing automated reasoning algorithms for
query answering in OBDM has been addressed by
many scientific works and projects. New ideas of how
to answer queries for different ontology languages
have been proposed (see, for example, Rosati and
Almatelli 2010; Chortaras, Trivela, and Stamou 2011;
Gottlob et al. 2014b; Lutz and Sabellek 2017) and var-
ious extensions to the basic ontology languages have
been explored, such as extensions based on Datalog
(see Calì et al. 2010) or on existential rules (see Got-
tlob, Manna, and Pieris 2015; Grau et al. 2013; König
et al. 2015).

Finally, there has been interesting and promising
work on extending query rewriting to more expres-
sive, not necessarily first-order rewritable, ontology
languages (Pérez-Urbina, Horrocks, and Motik 2009;
Chortaras, Trivela, and Stamou 2011; Eiter et al.
2012; Calì, Gottlob, and Lukasiewicz 2012; Kamins-
ki, Nenov, and Grau 2016; Bienvenu et al. 2014).

Other Services
While computing certain answers of queries under
the classical semantics has been the main subject of
the research investigation on OBDM, there are sever-
al other services that an OBDM system should pro-
vide. A brief overview of two services, and an explo-
ration of one issue, follows.

Data Quality Assessment
Besides ontology-mediated querying and other data
management tasks, recent works argue that OBDM is
a promising tool for assessing the quality of data,
especially in the presence of multiple, independent
data sources (Console and Lenzerini 2014; Catarci et
al. 2017). Some of the reasons are as follows: (1) bas-
ing data quality assessments on a formal conceptual-
ization of the domain of interest allows us to easily
blur out all the meaningless details of the single data
source and focus on real data quality issues; (2) dif-
ferent data sources can be analyzed using the same
yardstick, that is, the ontology, and hence accessed
and compared in terms of their quality; and (3) the
use of conceptualizations shared among the different
assets of an organization allows for data quality
assessments that are easy to present and use in many
different contexts.

Quality assessment is carried out through different
dimensions, such as consistency, accuracy, complete-
ness, and confidentiality. We briefly discuss consis-
tency, which is the quality dimension dealing with
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Table 1. DL-LiteA Assertions.

Symbols in square brackets may or may not be present, and R–(x, y) stands
for R(y, x).

Type DL Syntax FOL Semantics 

1      C1 !"""#$%C2! &x.C1(x) '#$%C2(x) 

2 (R#)%""""!"""C R#)%(x, y) ' C(x) 

3      C""""!"""(R#)% C(x) ' (y.R#)%*x, y) 

4  R1
#)% """"!""" R2

#)% R1
#)%   (x, y)  '  #$%R2

#)%  (x, y)  

5      (funct  R#)%)  R[−](x, y) + R#)%(x, z)"' y = z 

#$%



the coherence of data. Counterexamples to consis-
tency show that data suffers from integrity problems,
thus providing crucial information about the assets
owning such data. In the literature, it is often advo-
cated that consistency be assessed by checking
whether data follow specific rules for integrity. How-
ever, in traditional approaches such rules are either
implicit or specified depending on the single data
source under analysis. On the contrary, OBDM pro-
motes a new method, where the rules to be checked
are derived directly from the ontology and where
they have also been validated by the process of build-
ing the conceptual model of the domain. In addition,
instead of implementing laborious quality-checking
tasks for the various sources, the inference capabili-
ties inherent in ODBM systems provide automated
techniques for accessing consistency, singling out the
various inconsistencies present in the data, even
ranking them according to various predetermined
criteria. For example, in the application scenario dis-
cussed in the introduction, we are not forced to
implement a specific rule for checking whether a cus-
tomer exists that is classified by the data sources as
both an ordinary and a special customer. Indeed, we
can rely on the automatic verification of the rule by
means of the OBDM system as part of the consisten-
cy check of the whole OBDM system. We point out
that the extensive research carried out in the last
years has produced optimized algorithms for consis-
tency checking, which scale nicely when applied to
big data sources. Similar considerations hold for oth-
er data quality dimensions.

Inconsistency Tolerance
What are we supposed to do once we have found pos-
sible consistency problems in the data sources? It is
commonly accepted that inconsistency causes severe
problems in logic-based knowledge representation
systems. Because an inconsistent logical theory has
no classical model, it logically implies every formula,
and therefore query answering over an inconsistent
knowledge base becomes meaningless under classical
logic semantics. Unfortunately, in real-world OBDM
systems, inconsistencies are likely to occur between
the domain knowledge represented by the ontology
and that represented by the data at the sources,
because data sources are generally maintained by sin-
gle applications and so are kept coherent neither
with other data sources nor with the axioms of the
underlying ontology. Many research papers in the
last years deal with this problem (Lembo et al. 2010;
Rosati 2011; Lembo et al. 2011). In many of these
approaches, the fundamental tool for obtaining con-
sistent information from an inconsistent OBDM sys-
tem is the notion of repair (Arenas, Bertossi, and
Chomicki 1999). A repair of a data set contradicting
a set of axioms is a database obtained by applying a
minimal set of changes that restore consistency.
There are several interpretations of the notion of

minimality, and different interpretations give rise to
different inconsistency-tolerant semantics. Under
most interpretations of minimality, there are many
possible repairs for the system, and the approach
sanctions that what is consistently true is simply
what is true in all possible repairs. Thus, inconsisten-
cy-tolerant query answering amounts to computing
the tuples that are answers to the query in all possi-
ble repairs. Interesting papers investigating these
notions in the context of OBDM have been written
by Lembo et al. (2015) and Bienvenu, Bourgaux, and
Goasdoué (2016).

Open Data Publishing
Current practices for publishing open data focus
essentially on providing extensional information
(often in very simple forms, such as CSV files), and
they carry out the task of documenting data mostly
by using metadata expressed in natural languages, or
in terms of record structures. As a consequence, the
semantics of data sets are not formally expressed in a
machine-readable form. As we said before, OBDM
opens up the possibility of a new way of publishing
data, with the idea of annotating data items with the
ontology elements that describe them in terms of the
concepts in the domain of the organization. When
an OBDM specification is available in an organiza-
tion, an obvious way to proceed to open data publi-
cation is as follows: (1) express the data set to be pub-
lished in terms of a SPARQL query over the ontology,
(2) compute the certain answers to the query, and (3)
publish the result of the certain answer computation,
using the query expression and the ontology as a
basis for annotating the data set with suitable meta-
data expressing its semantics. Using this method, the
ontology is the heart of the task: it is used for express-
ing the content of the data set to be published (in
terms of a query), and it is used, together with the
query, for annotating the published data. First results
on using OBDM for open data were reported in the
paper by Cima (2017).

Conclusions
The OBDM paradigm is relatively new, but it is
attracting a strong interest from several communities.
Specific tools have been designed and delivered for
query answering in OBDM7 (Calvanese et al. 2011;
2017), and several projects have been carried out with
the goal of adopting this paradigm in real-world
applications (see, for example, Kharlamov et al. 2015;
Antonioli et al. 2013; Daraio et al. 2016). From a
research perspective, many groups worldwide have
been working on research problems related to OBDM,
producing an amazing number of scientific results.8

Interesting open problems remain, and it is reason-
able to foresee that new results will contribute to
building novel tools or improving the current ones.

Interestingly, OBMD has helped to renew the
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interaction between the areas of data management
and artificial intelligence. While in the last years such
interaction was confined to methods and techniques
for data mining and knowledge discovery, OBDM is
pushing the community of knowledge representa-
tion and reasoning towards research topics that are
closed to big data and data science. I think that this
represents a great opportunity for our community,
especially in the light of the importance that the
notion of data-driven society is gaining.
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Notes
1. The 2017 Data Scientist Report, CrowdFlower.

2. The acronym is similar to OBDA, which stands for ontol-
ogy-based data access. We use OBDM because we consider
data access to be just one aspect, although important, of the
more general notion of data management.

3. We consider languages that are fragments of OWL 2
(www.w3.org/TR/owl2-syntax), the ontology web language
originated from description logics (Baader et al. 2007).

4. Not to be confused with the DLs studied by Artale et al.
(2009), which form the DL-Litebool family.

5. www.w3.org/TR/owl2-profiles.

6. Except for completeness of hierarchies, which is instead
present in the ontology of the example.

7. See www.stardog.com.

8. See the series of description logics workshops at
dl.kr.org/workshops.
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