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n In classification problems, especially
those that categorize data into a large
number of classes, the classes often
naturally follow a hierarchical struc-
ture. That is, some classes are likely to
share similar structures and features.
Those characteristics can be captured by
considering a hierarchical relationship
among the class labels. Motivated by a
recent simple classification approach on
binary data, we propose a variant that
is tailored to efficient classification of
hierarchical data. In certain settings,
specifically, when some classes are
significantly easier to identify than
others, we showcase computational and
accuracy advantages.

Weconsider the problem of classification, in which
one is given a set of labeled data used for training
and from that data wishes to accurately assign la-

bels to new unlabeled data. In the general problem, the class
labels themselves have no relation to one another; however,
data can often be organized in a hierarchical way. For ex-
ample, in image classification problems, the data may con-
tain images of inanimate and living objects. Then, within
each of those classes the data may be further identified as
images of vehicles and toys, say, or humans and animals. The
data could then be further subdivided into classes of various
animal types, and so on. This structure can be visualized as a
tree, where the children of each node correspond to its
subclasses. Each data point in this case would have a label
corresponding to a leaf of the tree but also possesses the
characteristics of all the labels of its ancestors. One option, of
course, would be to simply use generic classification schemes
to classify the data using the leaf labels only. Hierarchical
classification, however, makes use of information and struc-
ture between groups in classifying the data (Gordon 1987;
Silla and Freitas 2011). Extensions of popular classification
methods such as the support vector machine to the hierar-
chical setting are not straightforward, and such approaches
often decompose the problem into many subproblems, leading
to higher computational complexities (Cheong, Oh, and Lee
2004; Weston and Watkins 1998).
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Recently, Needell, Saab, andWoolf (2017) proposed
a simple classification scheme (SCB) that uses only
binary representations of data to perform classifica-
tion; such representations arise naturally or are par-
ticularly efficient in many applications (Fang et al.
2014; Jacques et al. 2011; Aziz, Sorensen, and Van der
Spiegel 1996; Bottou and Bousquet 2011; Gupta,
Nowak, and Recht 2010). Here, we show that this
method lends itself well to performing hierarchical
classification and, in particular, using the hierarchical
structure to improve computational efficiency. The
classification method uses position of data relative to
random hyperplanes to predict in which class a point
is most likely to belong. Needell, Saab, and Woolf
(2017) demonstrated that for more complex data,
using combinations of hyperplanes enables one to
make more accurate predictions. However, the com-
putation required to make a prediction scales expo-
nentially in the number of hyperplane combinations
used. Fortunately, the method is highly adjustable,
and for data that are likely to be more or less difficult
to classify, one can adjust the number of these hy-
perplane combinations. Such a method is likely to be
particularly useful for hierarchical data in which
certain subclasses of data are more or less difficult to
classify than others.

Underlying Classification Algorithm
In this section, we briefly review the SCB classification
algorithm thatmotivates our approach; Needell, Saab,
and Woolf (2017) provide mathematical details.
Suppose X is our data matrix and that each data
point (column) of X is associated with one of G class
labels. We are given binary measurements of the form
Q = signðAXÞ, where A is a wide random matrix (for
example, Gaussian). The rows of A correspond to
(random) hyperplanes, and thusQi;j simply captures on
which side of the ith hyperplane the jth data point lies.
Let us build some intuition for the approach.

Consider the two-dimensional data X shown in the
top plot of figure 1, consisting of three labeled classes
(green, blue, red). Consider the four hyperplanes
shown in the same plot, and suppose we had access
only to the binary data Q = signðAXÞ, where A con-
tains the normals to each hyperplane as its rows. For
the new test point x (which by visual inspection should
be labeled blue) and its binary data q= signðAxÞ, one
could simply cycle through the hyperplanes and de-
cide which class x matches most often. For example,
for the hyperplane colored purple in the plot, x has
the same sign (that is, lies on the same side) as the blue
and green classes. For the black hyperplane, xmatches
only the blue class, and so on. In this example, x will
clearly match the blue class most often, and we could
assign it that label correctly. However, next consider
themore complex geometry given in the bottom plot,
where the data consist of only two classes (red and
blue), but these are now no longer linearly separable.
This same strategy will no longer be accurate for the

test point x. However, now instead of single hyper-
planes, consider hyperplane pairs, and ask which class
label xmost often matches (note that in this context,
by matches we now mean that points lie in the same
cone into which the hyperplanes divide the space).
For example, for the pair of hyperplanes colored or-
ange and green, x matches both red and blue points,
whereas for the pair of hyperplanes colored orange
and purple, x matches only the blue class. One could
now cycle through all pairs and again ask which class
x matches most often. For complex data, we could
aggregate such information across various levels,
where at levellwe considerl-tuples of hyperplanes
in this way.
Concretely,we can aggregate this information across

levels by using a membership index parameter that
computes the fraction of points with a given sign
pattern that correspond to a particular label [we also
use a balancing term to handle large deviations in
class sizes; see Needell, Saab, and Woolf (2017) for
details]. Intuitively, the membership values indicate
how likely a point with a particular sign pattern will
lie in a particular class, given information from an
l-tuple of hyperplanes. Then, to classify a test point x
with binary measurements q= signðAxÞ, the mem-
bership values are simply summed over all measure-
ments m and levelsl. This process gives a vector
~r ∈R

G that indicates the likelihood that the point
belongs to each class g. The label assigned to x is
simply the class g corresponding to the largest value
of ~r. The SCB classification method is described in
more detail by Needell, Saab, and Woolf (2017).

Computational Complexity
We aim to reduce the computational cost of classifi-
cation via SCB by making use of a hierarchical
structure of data. We do not consider the cost of
calculating q= signðAxÞ in our analysis, as we assume
that the algorithm is provided these binary mea-
surements. Additionally, one may not have access to
the underlying vector x and knows only the binary
measurements q.
Identifying the sign pattern of a test point with

respect to each hyperplane tuple and finding the
corresponding membership value is one of the most
costly components of testing. The number of flops
required for this step depends on theway inwhich the
unique sign patterns from the training data are stored.
We consider an implementation in which one uses a
lookup table for all possible sign patterns and thus this
step incurs a constant lookup time. The suggested hi-
erarchical strategy leads to computational savings
irrespective of this implementation choice. SeeMolitor
and Needell (2018) for more detailed flop counts.

Adjustment for Hierarchical Classification
We now describe our proposed adjustment for han-
dling hierarchical classification, where the labels
possess some sort of tree structure. The classification
scheme described above and by Needell, Saab, and
Woolf (2017) has the property that more levels (higher
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L) are needed to accurately classify more complex data.
Thus, if we know in advance that certain classes may
require fewer levels for classification with sufficient
accuracy, we may isolate these classes in an initial
classification that uses fewer levels and then further
classify these groups of classes using only the required
number of levels for sufficient accuracy. This strategy
leads to computational savings without sacrificing
accuracy when some classes are more easily discerned
from the others.
For illustration, consider a simple example inwhich

we have three classes, g1; g2; g3. Suppose that L1 levels
are necessary to classify data belonging to g1, but L2
levels are required to differentiate between classes g2
and g3 where L2 >L1. We can perform binary classi-
fication between g1 and fg2; g3g using L1 levels, fol-
lowed by classification between g2 and g3 using L2
levels. These classifications can be organized as a tree
with nodes H1 and H2 as shown in figure 2.
To further discern between points predicted to

belong to g2 or g3, we can use the same measurements
(or random hyperplanes) as used in the first classifi-
cation. The overhead cost to carrying out two classi-
fications instead of one is quite limited overall. For
classifications in which some classes require fewer
levels to predict, this hierarchical structure can lead to
significant computational savings, as shown in the
experimental results that follow. The magnitude of
the computational savings is highly dependent on the
distribution of the testing data, however, as we reduce
computational costs only for those points predicted to
be in one of the classes that is easier to discern, that is,
requires fewer levels. See Molitor and Needell (2018)
for details.

This hierarchical classification strategy naturally
generalizes to incorporate more complicated and
deeper hierarchical structures in which the classifi-
cations can be structured as a tree. See figure 3 for an
example. To maximize computational gains, however,

H1
{g1, {g2, g3}}

H2
{g2, g3}

Figure 2. Hierarchical Classification Tree
for a Simple Three-Class Example.

In this example, differentiating g1 is significantly easier than differentiating
g2 and g3.
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Figure 1. Two Motivating Examples for the Classification Method.
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we would like the tree to be imbalanced in terms
of the maximum number of levels required for
sufficient classification accuracy along different
paths of the tree. Such an imbalance arises naturally
in many applications. For example, consider brain
imaging and the problem of detecting brain ab-
normalities including tumors and dementia; tumor
detection is a fairly easy learning problem, whereas
classifying the various types of dementia remains
very challenging (Duncan and Strohmer 2016;
Higdon et al. 2004).

Determining Class Hierarchies
When the number of classes is large, reorganizing a
flat multiclass classification problem into hierarchical
(binary) classifications can be used as a general strat-
egy to reduce the computation required for testing
(Griffin and Perona 2008). Our proposed strategy need
not be applied only in settings where the data follows
or are presented within the context of a clear hier-
archical structure. A variety of previous works studied
ways to detect structure among classes and to use this
information to construct an informedhierarchy of the
classes (Griffin and Perona 2008; Godbole, Sarawagi,
and Chakrabarti 2002; Silva-Palacios, Ferri, and
Ramírez-Quintana 2017; Li, Zhu, and Ogihara 2007;
Zupan et al. 1999). These strategies generally aim to
group classes that are deemed similar by some mea-
sure, to reduce the number of misclassifications that
occur high in the tree. For example, some work
suggests constructing a hierarchy based on the
confusion matrix of the flat multiclass classification
problem (Griffin and Perona 2008; Godbole, Sarawagi,
and Chakrabarti 2002; Silva-Palacios, Ferri, and

Ramírez-Quintana 2017). Preferentially construct-
ing class hierarchies that are imbalanced in terms of
ease of classification along different paths will also
largely affect the computational savings achieved by
our proposed hierarchical classification method.
We save details on how one might achieve this for
future work.

Experimental Results
In the following experiments, we test the computa-
tional gains achieved by the proposed hierarchical
classification strategy compared with direct classifica-
tion into each individual group via SCB from Needell,
Saab, and Woolf (2017).

Two-Dimensional Synthetic Data
We first test the computational gains achieved by the
proposed hierarchical classification strategy on the
two-dimensional data shown in figure 4. Each color
represents a different class, and there are six classes
in total. The red and yellow clusters each contain 200
training and testing points, and the remaining four
classes, green, black, blue and cyan, contain 100
training and testing points each. The distribution of
testing points among the classes will have a signifi-
cant effect on the computation needed for testing in
the hierarchical case. We expect classifying points
from the red and yellow classes to be easier and to
require fewer levels than correctly classifying points as
green, black, blue, or cyan.
To take advantage of this structure in the data, we

first predict whether a testing point is red or yellow
versus green, black, blue, or cyan by using only one
level. If the test point is predicted to be red or yellow,
we then discern between these two classes again by
using only a single level. If the test point is predicted
to be green, black, blue, or cyan, we then predict
among these classes by using varying numbers of
levels. Accuracies and testing flops for the hierarchical
classification strategy versus SCB are shown in figure 5
using m=50. We see a significant reduction in com-
putational cost using the hierarchical strategywithout
sacrificing accuracy.

Three-Dimensional Synthetic Data
We test the hierarchical classification strategy and
SCB on three-dimensional synthetic data as given in
figure 6. Each color represents a different class. Again,
we expect the four Gaussian clusters to require fewer
levels for sufficiently accurate classification than do
the arcs. The training data are distributed so that
there is an equal number of training and testing
points in the Gaussian clusters and arcs. Specifically
we have 100 training and testing points in each arc
and 200 training and testing points in each Gaussian
cluster.
Using a strategy similar to that used in the two-

dimensional experiment, we first build a classifier to
predict whether a point belongs to one of the arcs or

H1
{g1; {g2, g3}, {g4, g5, g6}}

H2
{g2, g3}

H4
{g4, g5}

H3
{{g4, g5}, g6}

Figure 3. Example Hierarchical Classification Tree.

A classifier would be trained at each node, Hc, to classify data among the sets.

62 AI MAGAZINE

Deep Learning and Security



one of the Gaussian clusters using only a single level.
If a data point is predicted to be in one of the
Gaussian clusters, we then use a single level again to
predict to which of the clusters it belongs. If a data
point is predicted to be in one of the arcs, we use more
levels to perform the subsequent classification to discern
between the arcs.We test the accuracy and computation
required for using a variety of levels in this second
classification. As in the two-dimensional experiment,

we again see a reduction in the computational cost of

testing without sacrificing accuracy.

MNIST
We demonstrate that our hierarchical strategy can
lead to computational savings on the MNIST data
set of handwritten digits,1 although MNIST is not

H1
{{red, yellow}, {green, black, blue, cyan}}

H2
{red, yellow}

H3
{green, black, blue, cyan}

Figure 4. Hierarchical Classification Tree for Two-Dimensional Synthetic Data in Figure 5.

-1.5 -1 -0.5 0 0.5 1 1.5
0.4

0.5

0.6

0.7

0.8

1

0.9

A
cc

ur
ac

y

-1.5

-1

-0.5

0

0.5

1

0 1 2 3
Total Testing Flops ×106

Flat Multiclass Classification
Hierarchical Classification

Figure 5. Accuracies and Total Testing Flops.

For the data distributed as given in the upper plot, where each color represents a different class, we classify testing data by either SCB or our
proposed hierarchical classification strategy, in which the first classification discerns between red or yellow versus green, black, blue, or cyan.
Accuracy and testing flops required are given in the lower plot using m=50. Results are averaged over 50 trials.
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inherently hierarchical. Consider the digits 1 through
5. Intuitively and in practice, digit 1 tends to be easier
to classify correctly than the other digits. For example,

ifwe apply SCB to classify digits 1 through 5 using 1000
training points for each class and 10 levels and testing
on 200 training points from each class, we find that
98.5% of the 1s are classified correctly, whereas the
overall accuracy of classifying digits 1 through 5 was
89.2% (the accuracy for classifying digits 2 through 5
was 86.88%). Thus, it is reasonable to expect that fewer
levels are required for sufficiently accurate classification
of the1s thanare required to classify the remainingdigits.
We induce a hierarchical structure by first classi-

fying 1s versus not 1s, followed by classification into
digits 2, 3, 4, and 5 for those test points that were
predicted to not be 1s in the first classification. When
training the first classifier, we downsample the training
data for digits 2 through 5 so that we have an equal
number of training data points for 1s and not 1s. We
found that this adjustment improved the accuracy of
the first classification. Five levels are used for the first
classification into 1s versus not 1s, and a varying number
of levels (5 to 10) are used for the subsequent classifica-
tion. We again see a reduction in the total testing flops
required to achieve a given accuracy. Here, we use an
equal number of test points for each digit and thus get
computational savings for approximately one-fifth of
the test points, specifically, for all test points that are
predicted to be 1s. If we had a much higher proportion
of 1s than the other digits, then we would expect the
computational savings to be evenmore significant. These
results are depicted in figure 7. Additionally, because
this tree is fairly shallow, as expected the improve-
ments aremild, andwewould expectmore significant
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Figure 6. Three-Dimensional Data.

For the data distributed as given in the upper plot, where each color represents a different class, we classify testing data by either SCB or our
proposed hierarchical classification strategy, in which the first classification discerns between red or yellow versus green, black, blue, or cyan.
Accuracy and testing flops required are given in the lower plot using m=50. Results are averaged over 50 trials.
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Figure 7. MNIST Data.

Accuracy and testing flops required for SCB versus our proposed hierarchical
classification strategy in classifying digits 1 through 5 in the MNIST data set
are given for m=500. Results are averaged over 10 trials.
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improvement for real data that has a larger and more
imbalanced tree structure, as in the other experiments.

Conclusion
We have demonstrated that the classification algo-
rithm proposed by Needell, Saab, and Woolf (2017)
can be readily adapted to classify data in a hierar-
chical way that improves computational efficiency.
We achieve this by using fewer levels to classify
data points predicted to be from classes that are more
readily identifiable. We could potentially further re-
duce computational costs for easier-to-classify data by
reducing the number of measurements m in those
cases as well. Theoretical guarantees as well as mod-
ifications that alleviate error propagation down the
tree are important directions for future work.
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