
Tactical warfare is complex (Bar-Yam 2004). The com-
plexity, range, and speed of war are driving us to new 
technologies to remain competitive. Successful tactical 

operations require agile, adaptive, forward-thinking, fast-
thinking, and effective decision-making. Advancing threat 
technology, the tempo of warfare, and the uniqueness of 
each battlespace situation, coupled with increased informa-
tion that is often incomplete and sometimes egregious, are 
factors that cause human decision makers to become over-
whelmed (Zhao et al. 2015). Advances in AI methods, 
increased amounts of data, and improvements in computa-
tional capabilities lead to a potential solution to address this 
complexity — through improved tactical knowledge, auto-
mated decision aids, and predictive capabilities. 

There are many real-world challenges that AI technologies 
can address. These challenges include self-driving cars, air 
traffic management, finance and market analysis, as well as 
issues pertinent to telecommunications, hospitals, medical 
insurance, and marketing. One aspect of the tactical domain 
that sets it apart is the existence of the adversary whose 
objective is to outthink and overtake our military. This adver-
sarial stance adds another dimension to the challenge of 
gaining situational knowledge and making effective deci-
sions — as the adversary is intentionally attempting to obfus-
cate our knowledge and counter our actions. As illustrated in 
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n Artificial intelligence, as a capability 
enhancer, offers significant improve-
ments to our tactical warfighting 
advantage. AI provides methods for fus-
ing and analyzing data to enhance our 
knowledge of the tactical environment; 
it provides methods for generating and 
assessing decision options from multidi-
mensional, complex situations; and it 
provides predictive analytics to identify 
and examine the effects of tactical 
courses of action. Machine learning can 
improve these processes in an evolution-
ary manner. Advanced computing tech-
niques can handle highly heterogeneous 
and vast datasets and can synchronize 
knowledge across distributed warfare 
assets. This article presents concepts for 
applying AI to various aspects of tacti-
cal battle management and discusses 
their potential improvements to future 
warfare. 
 



figure 1, the complexities inherent in the tactical 
domain include unexpected and rapidly escalating 
events; deadly threats of many types; a variety of mis-
sions involving defensive and offensive operations 
and rules and policies dictating courses of action; 
inaccurate and incomplete knowledge of the situa-
tion; and courses of action that produce a range of 
potential consequences and adversarial reactions. AI 
technologies can support human decision makers in 
facing such a complex decision space. 

The goal of AI is to create systems that can func-
tion intelligently and independently. In broad terms, 
AI encompasses the computer processing of images 
using symbolic learning to enhance what is seen, the 
processing of data using machine learning for 
speech, object, and pattern recognition, and cogni-
tive learning and analysis for classification and pre-

diction. Advances in sensors, communications, big 
data, and computers offer a prime opportunity for AI 
solutions. With large amounts of data from different 
sources and increased processing speeds, AI methods 
can provide the means to greatly improve tactical 
knowledge and enable automated decision aids or 
battle management aids (BMAs) to support the 
warfighter. 

AI technologies have the potential to pay big divi-
dends for naval tactical decision superiority. AI 
enables BMAs for improving combat identification, 
identifying and assessing tactical courses of action, 
coordinating distributed warfare resources, and 
incorporating predictive war-gaming into tactical 
decisions. AI is not an off-the-shelf, one-size-fits-all, 
or self-contained solution. Additionally, AI will 
require a systems of systems (SoS) approach. This arti-

Articles

64    AI MAGAZINE

Figure 1. The Complex Tactical Environment. 
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cle describes concepts for incorporating AI methods 
into decision aids to improve naval tactical knowl-
edge and achieve decision superiority. 

Combat Identification:  
Knowns and Unknowns 

As Donald Rumsfeld put it: “There are known 
knowns. These are things we know that we know. 
There are known unknowns. That is to say, there are 
things that we know we don’t know. But there are 
also unknown unknowns. There are things we don’t 
know we don’t know.”1 

A way of conceptualizing the challenge of combat 
identification (CID) is through the four categories 
shown in figure 2. In the upper-left quadrant, there 
are known knowns for areas of interest (AOI) that 
have been identified (assigned an identification or 
ID)  and for which a track has been developed. A 
track is defined as a kinematic representation of the 
real-world object, based on sensor data that has been 
processed by a computer system. In the upper-right 
quadrant, there is a track of an object, but it hasn’t 
been given an ID, which means that there is insuffi-
cient information to assign an identification to the 

object. So, we are aware that the object exists, but we 
don’t understand what it is. These are our known 
unknowns. In the lower-left quadrant, we know that 
specific objects exist, but we haven’t established a 
track, so we don’t know exactly where they are locat-
ed. These are our unknown knowns. Finally, the low-
er-right quadrant refers to objects that might exist in 
our AOI that we aren’t at all aware of. These are our 
unknown unknowns. 

Categorizing objects in the real-world AOI accord-
ing to this known and unknown framework allows 
us to apply appropriate data analysis methods to 
each category. Figure 3 identifies different sensor and 
processing capabilities that could best apply to each 
of the four quadrants. The known knowns (in the 
upper-left quadrant), in general, can be analyzed 
using linear processes to gain ID and tracks of the 
real-world objects using structured data from 
onboard sensors. Known unknowns (in the upper-
right quadrant) benefit from the collection and 
fusion of netted data from distributed sensors. In this 
case, multilinear processing might enable these 
unknown objects to be identified. For unknown 
knowns (in the lower-left quadrant), the use of mul-
tilinear processing, including correlation algorithms 
with increased data collection from multiple distrib-

Figure 2. Knowns and Unknowns. 
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uted sensors, might enable these objects to be locat-
ed and tracked. Finally, the ability to become aware 
of unknown unknowns (in the lower-right quadrant) 
will rely on large amounts of disparate, unstructured 
data from distributed sensors and other information 
sources and will require data strategy and analytics 
that include AI and nonlinear processing. 

To take it a step further, figure 4 shows the types of 
data analytics and AI methods applied to the four cat-
egories of knowns and unknowns. Here, we can see 
that simpler methods of fusing and applying statistics 
to data from news and wiki and onboard sensors is 
sufficient for the known knowns. As we shift to the 
upper-right quadrant, the use of forecasting, text and 
data mining, business intelligence, search engines, 
and some predictive analytics can support the identi-
fication of tracked objects. As we shift to the lower 
left, the use of knowledge discovery, collective mem-
ory, and findability algorithms can support finding 
the location of known objects. Finally, as we shift to 
the most challenging quadrant, the lower right, AI 
methods such as predictive analytics, machine learn-
ing, big data processing, and game theory might 
enable the identification and location of objects that 
are completely unknown. 

Shared Situational Awareness 

Gaining situational awareness is of utmost impor-
tance for both automated decision support systems 
and human decision-makers. “A CID [civil investiga-
tive demand] decision-maker is not interested in data 
or big data as such; but the knowledge it provides.” 
(Zhao et al. 2015, 22). They are interested in action-
able knowledge required to gain and maintain the 
tactical advantage. Situational awareness (SA), or 
knowledge of the tactical environment, must have 
low latency, high fidelity, and high confidence, and 
must cover a tactically relevant range. This knowl-
edge or awareness of the situation can shorten deci-
sion times, and therefore response times. Warfighters 
want to increase the probability that objects in the 
operational environment are correctly identified, so 
decisions made for courses of action (COA) can rely 
on the best possible understanding of the situation. 

Deep learning techniques using big data can be 
used to specifically address the challenges of SA, 
including improving the classification accuracy and 
certainty of air objects by associating, correlating, 
and fusing heterogeneous data sources. This 
approach is related to machine vision, which recog-
nizes objects using very high-dimensional data 
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Figure 3. Data and Processing Strategies for Knowns and Unknowns. 
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attributes. In addition, association learning for diver-
sified attributes from heterogeneous data sources 
(sensors and nonsensors) — which may not follow 
standard data definitions — can potentially improve 
object recognition tremendously (Zhao et al. 2015).  

Activity-based intelligence (ABI) and object-based 
production (OBP) are computational methods that 
offer potential for SA.2 ABI methods discover new enti-
ties and object relationships and behavior patterns 
based on the exploitation of all-source data at a mas-
sive scale. OBP methods organize and maintain 
knowledge around objects to discover things that exist 
and things that happen. The combination of these 
two methods leads to a tactical decision advantage. 

The intended outcome of CID and SA capabilities is 
to provide actionable knowledge. Actionable knowl-
edge is knowledge that is accurate, complete, and 
timely enough for warfighters to act upon, even to the 
point of making COA decisions that include weapon 
engagements. Another outcome is to produce knowl-
edge that is shared across distributed warfare plat-
forms, such as ships and aircraft. This shared knowl-

edge enables a battle group to coordinate their actions, 
which further improves the tactical advantage. 

The observe-orient-decide-act (OODA) loop is the 
basis for a conceptual systems of systems (SoS) archi-
tecture for a future tactical capability based on the AI 
methods in figure 5. The ABI and OBP methods sup-
port the ability to observe the real-world AOI. AI 
methods and data analytics combine with data 
fusion and processing to orient the situation and sup-
port decisions and actions. BMAs provide automated 
support to complex tactical decisions. The use of net-
works and multiple instantiations of this architecture 
enable shared SA and distributed warfighting coordi-
nation. 

The desired outcome of the CID and shared SA 
processes is actionable knowledge. A notional display 
of CID determinations is shown in figure 6. An 
important feature would include computed confi-
dence levels to indicate the goodness of the CID 
knowledge. This determination would be a combina-
tion of complex factors including weather condi-
tions, sensor error, analytical approximation error, 
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Figure 4. AI Methods for the Knowns and Unknowns. 
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and temporal effects such as track or ID stability over 
time. If higher confidence levels were required, 
actions could then be taken to gather more data and 
information sources or to apply additional data pro-
cessing methods. 

Holistic knowledge of the situation is a required 
input to effective tactical decision-making. In addition 
to achieving CID for the objects in the battlespace 
AOI, there are many other types of knowledge 
required to gain complete SA of the tactical situation. 
Figure 7 illustrates these “pictures,” or categories of 
information. These various categories of information 
include knowledge of the warfare resources (weapons, 
sensors, communications, platforms, etc.), the weath-
er conditions, operational missions and directives, C2 
doctrine, rules and policies, and a model of what the 
adversary’s awareness of the battlespace might look 
like. This additional information will greatly enhance 
tactical decisions — made by human warfighters with 
a range of support from BMAs. 

Another SA challenge that AI methods can address 
is the ability to maintain a continuously changing 
model, or picture, of the continuously changing tac-
tical environment. An adaptive data strategy is 
required to update and maintain accurate and time-
ly SA that includes all of the types of knowledge 
shown in figure 7. Data from heterogeneous sensor 
and nonsensor data sources must be fused, processed, 
and managed as it is continuously received. The SA 
picture must be updated accordingly. As tactical oper-
ations unfold and data becomes outdated and no 
longer relevant, the system must recognize this and 
manage the data and picture accordingly. AI meth-
ods can be used to recognize and learn which parts of 
the data model are outdated and to manage the mod-
el as it continuously changes and adapts to the 
incoming data. 

Effective tactical operations also depend on gain-
ing a shared knowledge of the battlespace among dis-
tributed warfare platforms (such as ships and aircraft). 
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Figure 5. Conceptual Networked Architecture for Tactical Decisions.
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AI and its associated computational and data com-
munication and management capabilities can enable 
the achievement of shared SA. A SoS approach, as 
depicted in figure 8, is necessary to implementing a 
shared SA. In order for distributed ships and aircraft to 
achieve a common tactical picture, it is necessary for 
the tactical knowledge (that is, CID determinations) 
to be common on each platform. If each platform 
hosts an independently operating decision aid (that 
operates in isolation), the tactical knowledge will vary 
from platform to platform depending on what data is 
available at each platform. Implementing a common 
set of collaborative AI-enabled decision aids that com-
municate and synchronize with each other will 
achieve shared SA. A SoS approach to the data strate-
gy for managing and distributing data among the 
platforms is also required. 

Automated Battle Management Aids 

Automated BMAs are computer-aided decision sup-
port systems that are meant to enhance and improve 
tactical decisions. BMAs may improve decisions by 

speeding up the decision process, providing greater 
confidence in the knowledge that decisions are based 
on, developing more decision options, providing 
greater understanding of decision consequences, 
developing options with greater probability of suc-
cess, and/or improving the optimization of resource 
usage. The military currently uses BMAs to share and 
process data to develop operational pictures and sit-
uational awareness. With the support of AI tech-
nologies, BMAs of the future can be expanded to 
enhance all aspects of tactical decision-making.  

Decision Complexity 

Military tactical operations involve a great variety of 
battle management decisions. Tactical decisions 
involve the use or placement of warfare assets that 
include platforms (ships, aircraft, submarines, and so 
on), weapons, sensors, communication devices, and 
people (Johnson, Green, and Canfield 2001). Deci-
sions to use warfare assets are complicated by a num-
ber of decision complexity factors. Figure 9 illustrates 
four types of warfare decision factors: the temporal 
domain, the spatial domain, the proactive/reactive 

Articles

SPRING 2019   69

Figure 6. Conceptual CID Confidence Levels.
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domain, and the domain of rules and policies. Each 
of these domains affects the decision-making process 
and leads to increased decision complexity. These 
factors lead to a decision space that overwhelms 
human decision makers and requires an AI technol-
ogy solution. 

Planned or proactive decisions include positioning 
forces (like ships, battlegroups, and aircraft), stealth 
operations, offensive attacks, and denying enemy 
operations through jamming or other force measures. 
Examples of reactive or responsive decisions include 
defending against an active threat, moving platforms 
into a defensive posture, retreating from a threat envi-
ronment, and assessing battle damage. Effective bat-
tle management must recognize when proactive or 
reactive decisions need automated support. 

The nature of military decisions shifts over time 
and can be viewed as hierarchical. Strategic decisions 
have a longer time horizon and must take into con-
sideration high-level objectives — sometimes span-
ning years. Planning-level decisions have a shorter 
time horizon and are proactive even when arranging 
a defense. Tactical decisions, which are the main 
focus of battle management, have the shortest time 
horizon and involve very near-term planning or 

proactive decisions as well as reactive decisions in 
response to enemy actions. Consistency is desired 
among the three temporal decision domains to 
effect compatibility among tactical, planning, and 
strategic decisions. Likewise, plans and strategies 
need to support effective tactical warfare and reflect 
major changes in tactical threat environments. 
Automated BMAs should be designed to support a 
hierarchical decision paradigm, as well as one that 
supports and adapts to varying decision time hori-
zons. 

One of the results of the hierarchical temporal 
decision domain is a set of rules and policies that 
guide tactical decisions. These rules are one of the 
methods by which near-real-time decisions can align 
with longer-term plans and strategies. The rules and 
policies support effective tactical decisions that are 
consistent with the higher objectives. Automated 
decision aids must support dynamic and adaptive 
decision-making across the temporal and hierarchi-
cal domain to enable consistency among levels; con-
sideration of how changes at various levels might 
affect other levels; and effective promulgation of 
guidance across levels. 

A fourth way to categorize battle management 
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Figure 7. Types of SA of Knowledge. 
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decisions is by spatial domain, that is, space, air, sea, 
underwater, or land. Threats vary greatly in each of 
these operational environments. Likewise, warfare 
systems are developed to address specific threats or 
threat types that naturally reflect their spatial envi-
ronment. Naval battlegroups must address threats in 
all spatial domains, and at times, simultaneously. 
Automated BMAs have the potential to address this 
complexity through gains in cross-spatial-domain sit-
uational awareness and through the development of 
decision alternatives that prioritize missions and 
engagement strategies. 

Ultimately, the battle management decision space 
fluctuates from simple to complex as operations 
range from peacetime to multidomain threat 
encounters. Examples of changes to the problem 
space that affect the complexity of the decision space 
include battle tempo (or reaction time), the number 
of simultaneously occurring threats (or battle 
events), the severity of the consequences of battle 
events, the heterogeneity of threats (due to threat 
type or spatial domain), and the scope of the event or 

events (in terms of area or population affected). All of 
these operational factors translate into multidimen-
sional variables that comprise a decision space. As the 
decision space complexity increases, military human 
decision makers become overwhelmed. At this point, 
automated BMAs are necessary for effective decision-
making. 

Human-Machine Decision-Making 

The amount of information in the battlespace has 
increased due to more sensors, networks, partici-
pants, reach-back and intelligence. Human decision 
makers become overwhelmed with information and 
shortened decision times. Automated BMAs are a 
necessary capability required for effective tactical 
decision-making. 

Automated decision aids, or machines, as depicted 
in figure 10, can support human decision makers in 
a number of ways. Three models for human-machine 
decision-making interaction are shown (Johnson, 
Green, and Canfield 2001). The manual decision-
making model encompasses situations in which 
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Figure 8. SoS Approach to Shared SA.
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humans collect and store relevant information, as 
well as perform the decision analysis (processing and 
decision-making), in their heads. This model implies 
a fairly simple and straightforward decision space in 
which the amount of data and number of variants is 
manageable manually. In the semiautomated model, 
the human decision maker can rely on machines to 
manage, store, fuse, and process the input informa-
tion to display decision analytics to the human. Deci-
sion analytics may consist of knowledge of the bat-
tlespace and threats, COA options, and quantitative 
measures of expected event successes and conse-
quences. Finally, in the fully automated model, the 
role of the human is to monitor the automated 
machine decision processes and to override or 
change decisions when necessary. 

It is important to establish the appropriate mech-
anism for the type of decision being made. In gener-
al, decision-making can be performed manually 
when the problem space is relatively simple and the 
number of factors to be considered and the amount 
of information is manageable by the human decision 
maker. For some types of decisions, a semiautomated 
human-machine interface (HMI) mechanism is most 

appropriate. This approach is effective for more com-
plex decision spaces with potentially critical or dire 
consequences, requiring the support of automated 
BMAs, but with significant human involvement. A 
fully automated human-machine interaction is 
appropriate for decision spaces that are complex in 
terms of large amounts of information that must be 
processed and fused, but very straightforward in 
terms of the types of decisions being made. Fully 
automated decision modes are for peacetime opera-
tions where decisions do not have dire consequences 
or for highly complex operations where the decision 
reaction time is too compressed for humans. Fully 
automated decision modes are appropriate when 
there is very high degree of confidence in the infor-
mation and knowledge of the situation. For example, 
when it is known with high confidence that a tracked 
object is in fact an enemy threat target. 

A future capability for battle management decision 
support systems could select the appropriate decision 
model for the given decision space. Such a system 
would require a flexible decision-making architecture 
to accommodate the three human-machine models 
and apply them as needed. The superstructure itself 
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Figure 9. Tactical Decision Domains.
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would be monitoring the decision space and evalu-
ating what kinds of decisions needed to be made and 
then determining the appropriate interaction 
between the human and machine to make each deci-

sion. The superstructure would rely on AI methods to 
learn and assess the situational complexity to enable 
adaptive responses in the appropriate human-
machine mode. 
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Figure 10. Human-Machine Models for Decision-Making.
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Force-Level Decisions for  
Distributed Warfare Coordination 

Battle management operations are complex (Young 
2012). And “a high complexity task requires a system 
that is sufficiently complex to perform it” (Bar-Yam 
2004, p. 99). The tactical environment can range 
from peaceful to highly dangerous given a multitude 
of varied threats from many different directions. This 
mutability translates into a complex decision space 
for battle management. The state of the decision 
space must flexibly shift from linear and straightfor-
ward during normal nonthreat operations, to highly 
nonlinear and multivaried during combat opera-
tions. 

Characteristics of a complex problem space 
include complex objectives, complex environments 
and/or operations, adaptation, collective behavior, 
and unpredictable outcomes of decisions (Braha, 
Minai, and Bar-Yam 2006). Each of these characteris-
tics is inherent to tactical operations (Young 2012). 
The battlespace presents multiple objectives that are 
generally inconsistent and changing. Military sys-
tems must weigh their individual battle objectives, 
such as self-defense, against force-level missions that 
may include area defense, stealth operations, or 
defense of specific assets. Complex operations are 
required, as adverse and widely varying environ-
ments result in changing target priorities and multi-
ple cross-spatial domain missions. Adaptation is a 
required characteristic of warfare systems as they 
respond to the complex and changing threat envi-
ronment. Military operations must adapt effectively 
to threats to improve their chances of survival and 
meet tactical and strategic goals. The collective, or 
force-level, behavior of distributed warfare assets 
must be properly orchestrated to avoid collisions and 
friendly-fire incidents and ideally to benefit from 
their cumulative contributions. Finally, the unpre-
dictable outcomes of tactical decisions, ranging from 
misfires to misidentifications to misassessments of 
battle damage, result in a problem space made more 
complex through inaccurate knowledge and a ripple 
effect of actions and unforeseen consequences.  

AI has the potential to support human decision 
makers by characterizing the level of complexity in 
the operational environment and translating this 
knowledge to the decision space. Ideally, a complete 
and accurate picture of the battlespace will provide 
situational awareness to the decision space. BMAs 
using AI could monitor the picture and develop 
assessments of the complexity characteristics of the 
problem space. This knowledge could support effec-
tive and timely use of decision aids, as well as enable 
the effective interplay of human and machine deci-
sion-making. 

AI technologies support a multidimensional 
approach (Gharajedaghi 2011) to the problem space, 
enabling a force-level solution by viewing the battle-
space as a set of interacting systems. The ability to 

exploit the multidimensionality supports collabora-
tive force-level behavior that spans spatial and tem-
poral domains. It enables layered defense and inte-
grated fire control strategies involving distributed 
weapons and sensors. Automated BMAs, relying on 
AI methods, can provide the quantitative analysis to 
determine collaborative resource utilization when 
complex multidimensional objectives exist. 

Decision Scope and  
Systems of Decision Systems 

Complex tactical environments require a holistic per-
spective to manage warfare resources from a force 
level. As the environment becomes more complex, 
events are occurring more rapidly and in parallel. The 
numbers of decisions are increasing, as are the num-
ber of courses of actions required. More demands are 
being made on the finite set of warfare resources, and 
their missions, objectives, and courses of action are 
becoming more interrelated. Gaining a holistic 
understanding of multiple threats and missions, as 
well as the possible options for addressing them, 
along with the possible consequences, provides a 
more effective military response and might be 
required to effectively address demanding threats. 
The idea of battlespace perspective can be character-
ized as decision scope, that is, setting a boundary 
around the problem space and solution space. A 
more holistic decision scope includes an area, or the-
ater, and all threats and warfare resources in this 
geospatial area. A narrower decision scope may only 
include a particular threat and a particular platform 
and its associated assets.  

Establishing decision scope is both a limiting fac-
tor and a necessary enabler. Tactical decisions 
become more interdependent and messy in terms of 
cause and effect as the operational environment 
becomes more complex (Jackson and Keys 1984). 
Making a particular weapons engagement decision or 
sensor-tasking decision is simpler when there is one 
threat to kill or one area of interest to view. Howev-
er, narrowing the decision scope to firing a single 
weapon system or managing the sensors on one ship 
loses its overall force-level effectiveness when several 
tactical missions need to be addressed or many 
threats need to be prioritized and engaged. The prin-
ciple of holism, applied to decision-making in this 
context, involves including “simultaneously and 
interdependently as many parts and levels of the sys-
tem as possible” (Jackson and Keys 1984, p. 480). In 
other words, widening the scope of the decision 
space to perhaps consider a tactical area, or theater. 
Determining the decision scope is a decision in itself. 
The goal is to design future force architectures that 
support a flexible decision scope that can widen as 
force-level missions become more complex and 
might benefit from distributed warfare asset collabo-
ration. AI methods can enable and manage an adap-
tive architecture — identifying complexity and 
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adjusting decision scope and managing missions at 
the force level. 

Once a tactical military force faces a complex oper-
ational problem space, future automated BMAs could 
establish a more holistic and wider decision scope and 
support resource management at both the platform 
and force levels. Ultimately a variety of automated 
BMAs could support resource usage at different levels. 
BMAs supporting specific sensors and weapons could 
be orchestrated by a higher-level BMA architecture. 
Thus a system of BMA systems could be implemented.  

Resource Management 

Resource management is a primary focus of tactical 
decision-making and, consequently, a primary appli-
cation for automated BMAs. The previous section 
characterized the battle management problem space 
in terms of decision-making; made the distinction 
between decisions made by humans and how auto-
mated decision aids can support those decisions; and 
characterized battle management complexity. This 
section looks at some specific concepts for how AI 
technologies and concepts can enable and improve 
resource management. 

Defining warfare assets (ships, aircraft, submarines, 
weapons, sensors, communication devices/networks, 
data processing, and jammers) as systems allows 
them to be considered as resources and viewed in 

terms of their functions, performance, behavior, 
structure, and interfaces. It enables quantitative 
analyses to be performed based on resource charac-
teristics such as location, status, and expected capa-
bilities. As operations grow in complexity, AI meth-
ods could be used to determine the effective use of 
warfare resources when multiple objectives exist that 
overlap and conflict. Warfare resource utilization 
could, with the aid of BMAs, include forming collab-
orations among systems to enable systems of systems 
(or force-level) behaviors and capabilities to better 
address complex tactical missions. 

Resource management as part of the data fusion 
process (Steinberg, Bowman, and White 1998) is 
highlighted in figure 11. In this architectural con-
cept, resource management is considered as level 4 
processing — assessing the products of data fusion to 
determine how to best manage or task resources. 
Resource management also provides feedback to the 
data fusion process, tasking the level 0–3 processes. 
This data fusion architecture is still a useful paradigm 
for implementing AI methods in each processing lev-
el. Given significant advances in computing power 
and many new sources of data, the use of machine 
learning and deep learning can improve resource 
management — especially given complex opera-
tional situations and distributed warfare resources. 

Another way to conceptualize resource manage-
ment is in terms of systems or data models. 
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Figure 11. Resource Management within the Data Fusion Architecture.
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The decision space itself can be viewed as a system or 
model. Taking a systems approach to the decision 
space enables the definition of a boundary, inputs 
and outputs, functionality, performance, and struc-
ture. Figure 12 illustrates the decision space in its 
contextual environment. The actual real world is 
illustrated in the top left. Knowledge (or situational 
awareness) of the battlespace is developed and main-
tained as the problem space (or operational tactical 
picture). It includes tracked threat objects as well as 
terrain, weather, defended assets, and all other phys-
ical entities in the real world. These entities are mod-
eled in the form of data representations. A resource 
picture must also be developed and maintained that 
includes up-to-date status, health, readiness, and pro-
jected capabilities of the warfare assets. The problem 
space and resource picture comprise the primary 
inputs to the decision space.  

The decision space is the model of all of the factors 
going into the decision process to formulate tactical 
courses of action. The boundary of the conceptual 
decision space model surrounds the decision archi-
tecture and the decision analytics, which include 
decision aids, assessments, prioritizations, alterna-
tives generation, and overall decision management. 
The primary function of the decision space system is 
to develop decision alternatives. These alternatives 
provide recommendations to manage the warfare 
resource assets, such as sensor tasking, courses of 
action, weapon scheduling, and the movement of 
platforms. Secondary functions include estimating 
the confidence levels associated with decision alter-
natives and the many types of analyses that feed into 
the alternatives. Examples of analyses include priori-
tizing threats, evaluating war-gaming possible conse-
quences, estimating sensor error, estimating knowl-
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Figure 12. Tactical Models and the Decision Space. 
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edge accuracy and completeness, evaluating opera-
tional complexity, and recommending optimum 
human-machine decision-making interaction. The 
interaction between the human and automated deci-
sion space is not illustrated in the simplified concept 
shown in figure 12, but this interaction would be sig-
nificant in tactical operations. 

The outputs of the conceptual decision space sys-
tem would include decision alternatives, estimations 
of predicted consequences, estimated probabilities of 
success and failure, and the confidence levels associ-
ated with source information, options, and knowl-
edge in general. 

To coordinate tactical decisions across the force, a 
system of distributed decision systems is needed. A 
future concept that relies heavily on AI technologies 
is to integrate identical intelligent agents onto dis-
tributed warfare platforms. These agents would share 
data and information and each develop decision 
alternatives for both individual resource manage-
ment and force-level battle management options. 
The distributed agents would share decision alterna-
tives and synchronize their selections. This system of 
decision systems would enable distributed warfare 
coordination with the objective of optimizing war-
fare resources at the force level. This futuristic con-
cept would depend on intelligent analytical methods 
as well as intelligent and self-aware data strategies 
and data architectures. Ultimately, such a system of 
AI systems would enable huge gains in tactical deci-
sion superiority. 

Predictive Analytics 

Using methods of machine learning to process and 
analyze large amounts of heterogeneous data and 
information, AI technology can make predictions 
about probable effects, outcomes, and responses. These 
AI methods, referred to as predictive analytics (PA), can 
provide a powerful capability for tactical decision-mak-
ing. Armed with the knowledge of possible effects and 
adversary responses to courses of action, warfighters 
can leap ahead in terms of applying longer-term strat-
egy to near-term warfare decisions. 

A PA capability enables strategic operations within 
the tactical domain — enabling projections of possi-
ble consequences and effects of decision alternatives. 
Conceptually, PA can develop what-if and if-then pre-
dictive scenarios to shape the synthesis of future intel-
ligent decisions and coordinated resource manage-
ment. PA would identify projected short-term and 
long-term effects of different course of action options. 
It would enable BMAs to assess these projections and 
weigh them as courses of action are selected. 

Figure 13 contains some of the notional capabili-
ties of a future PA capability. Given tactical knowl-
edge of the operational situation and warfare assets, 
as well as COA options developed by the resource 
management capability, PA could assess the conse-

quences of COAs and develop projected future states 
of the environment and warfare assets. These projec-
tions would be used to support the selection of COAs 
with the most desired consequences. A PA capability 
would support tactical actions that best align short- 
and longer-term objectives. It could also assess the 
possible effects of weather predictions and the avail-
ability, depletion, and projected capability of warfare 
resources. It could also assess and predict the overall 
readiness, resilience, and warfare capability of a tac-
tical battle group. 

A PA capability could employ game theory meth-
ods to perform war-gaming assessments to predict 
enemy responses to tactical actions. A model of the 
adversary’s predicted knowledge, capabilities, 
intents, and strategies would have to be developed 
and maintained based on our knowledge and predic-
tions of the enemy. In addition, it would be neces-
sary to develop and maintain a predicted model of 
what the enemy knows about our forces, based on 
assumptions and any tactical knowledge we have. 
This war-gaming capability could conceptually be 
part of the operational BMA capability for tactical 
decision-making. 

Conclusions 

In summary, the battle management problem space 
is complex and it will only continue to grow in com-
plexity with the addition of more sensors, more 
information, more unmanned threats, more non-
state adversaries, and advances in technology. This 
ever-increasing complexity places a greater demand 
on tactical decisions — requiring them to be made 
both more quickly and more effectively. The level of 
complexity can easily exceed the abilities of human 
decision-making. Fortunately, the increase in sensors 
and information systems is also creating an opportu-
nity for AI as a capability enhancer and improver for 
tactical decision support. This paper introduced some 
concepts for using AI to improve combat identifica-
tion, shared situational awareness, battle manage-
ment, resource management, and operational war-
gaming. Employing AI effectively will require a 
holistic systems of systems approach to create an 
adaptive architecture of decision aids that synchro-
nizes distributed knowledge and decisions across the 
force, establishes and maintains decision scope, iden-
tifies levels of situational complexity, and self-assess-
es to manage human-machine interaction modes 
and determine levels of confidence in knowledge and 
COA. The effective use of AI in support of human 
warfighters provides the foundation for tactical solu-
tions and decision superiority. 

Notes 
1. A response US Secretary of Defense Donald Rumsfeld pro-
vided at a US Department of Defense news briefing, Febru-
ary 12, 2002. 

Articles

SPRING 2019   77



2. Decision Advantage Based on Activity-Based Intelligence 
and Object-Based Production. Vencore Inc. Presentation. 
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Figure 13. Predictive Analytic Concepts. 
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