Al Magazine Volume 3 Number 3 (1982) (© AAAI)

Towards the Principled

Engineering of Knowledge

Mark Stefik and Lynn Conway

Xerox Palo Alto Research Center
3833 Coyote Hill Road
Palo Alto, California 94304

Abstract

The acquisition of expert knowledge is fundamental to the creation of
expert systems The conventional appiroach to building expert. systems
assumes that the knowledge exists, and that it is feasible to find an ex-
pert who has the knowledge and can articulate it in collaboration with
a knowledge engineer This article considers the practice of knowledge
engineering when these assumptions can not be stiictly justified It
draws on our cxpericnces in the design of VLSI design methods, and
in the prototyping of an expert assistant for VISI design We suggest.
methods for expanding the practice of knowledge engineering when ap-
plied to fields that are fragmented and undergoing rapid evolution We
outline how the expanded practice can shapc and accelerate the process
of knowledge generation and refinement Our examples also clarify
some of the unarticulated present practice of knowledge engineering

Thanks especially to Daniel Bobrow for helping us to discover, refine,
and articulate many of these ideas We are also grateful to John Seely
Brown, Douglas Lenat, Christopher Tong, and Michael Williams for
their thorough reviews of drafts of this article Thanks also to the
members of the KBVLSI project: Alan Bell, Iarry Barrow, Daniel
Bobrow, Harold Brown, Phil Gerring, Gordon Foyster, Gordon Novak,
Christopher Tong, and Narinder Singh, who have participated in the
knowledge engincering and expert systems aspects of the project The
synergistic combination of their contributions to the pioject, merging
ideas from a wide variety of viewpoints, has given us all a sense of ex-
citement and comimon puipose

Thanks to the Xerox Corporation for providing the intellectual and
computational environment in which this work could be done This re-
search is being conducted as pait of the KBVLSI project in collabora-
tion with the Heuristic Programming Project at Stanford University
The Stanford component of the research is funded by the Defense Ad-
vanced Research Projects Agency

1 THE AI MAGAZINE Summer 1982

A STRONG MOTIVATION for Al research on expert systems
is that thesc problem domains provide an appropriate leve
of complexity for studying problem solving. Toward this
end, knowledge acquisition is sometimes considered a ncces
sary burden, carried out under protest so that one can get
on with the study of cognitive processes in problem solving
In this article we argue that the two activities—knowledge
acquisition and cognitive modeling—are necessarily inter-
woven, and provide interesting opportunities when taker
together. Knowledge acquisition shapes cognitive model-
ing because operational knowledge contains assumptions anc
direetions for its use, that is, an implicit processing model
In return, problem solving models can profoundly shape
knowledge acquisition by providing a framework for the ar-
ticulation and creation of domain expertise This intro-
duces the theme of this article, that one can engineer bodies
of knowledge for various purposes, such as learnability, o
efficient use in problem solving. To the knowledge engineer-
ing slogan “knowledge is power,” we add “knowledge is an
artifact, worthy of design ”

The organizatiou of this article is as follows: We first
consider the practice of VLSI design and find difliculties with
the building of expert systemns for that area using conven-
tional methods. The second scetion relates some experiences
in the transformation of design practices in VLSI design com-
munities. These experiences suggest that knowledge em-
bedded in these transformed methods gives practitioners a

Firm X

VLSI Clan A

Applic. 1

VLSiClanC
Applic. 2

-«

Figure 1

The demographics of VLSI clan structure
tion, the design community is divided into a number of clans

To a first approxima-
Each clan is

divided by specializations of labor, and works on a particular type of application

(e g, microprocessor chips)

Secrecy barriers between firms inhibit flow of

knowledge between clans, although some specialties may find common practice in

several firms

“cognitive advantage ” In the third section we suggest some
principles and measurements that can be applied to the en-
gineering of knowledge, in order to impart advantages for
cognitive processing We then present examples of the prin-
cipled engineering of knowledge drawn from our experiences
with VLSI design methodology. Finally, we offer speculations
on possible roles for knowledge engineers working on new
bodies of knowledge.

A Shift in Viewpoint from Experts to Clans

Over the past decade there have been tremendous ad-
vances in the fabrication of integrated circuits (Robinson,
1980a). Circuits have become smaller and manufacturing
costs have dropped dramatically. Design is becoming the
dominant cost (Robinson, 1980b) with the current round of
miniaturization, which goes by the name of VLSI for very
large scale integration. This is leading to a substantial inter-
est in understanding design processes.

The tendency to specialize and the shifting of the tech-
nological hase are forces for diversity in the integrated cir-
cuit design community. To a first approximation, the com-
munity can be viewed as a collection of sometimes indepen-
dent and sometimes competing clans having different prac-
tices, identifiable by their tools and methods Digital system
architects and integrated circuit designers often specialize in
different kinds of systemns and circuits, such as microproces-
sors or digital signal-processing chips (just as mechanical
system designers may specialize in domains such as aireraft

or automobiles). The picture is further complicated by

the traditional stress on secrecy within the integrated cir-
cuit industry—designers in dilferent, firms find themselves in-
itiated into the local craft practices of their particular firms.
Cultural drift occurs, gradually widening the gap between
practices of different firms. Therefore, many separate clans
in different firms use different methods to work different parts
of the space of possible designs (see Fig. 1).

The practice of VSLI design has further evolved and frag-
mented in response to shifts in the technological base of in-
tegrated circuit processing-technology As companies have
explored and invested in different fabrication technologies,
the design community has become divided by another dimen-
sion, that of the particular technology of implementation
(nMOS, CMOS, 1%L, etc.).

Within each clan in the community, expertise is fur-
ther split according to specialized divisions of labor For
example, microprocessor design has traditionally had four
levels of specialization system architecture, logic design,
circuit design, and finally, layout design. Such division of
expertise among cooperating specialists is observed in many
problem domains. However, in integrated ecircuit. design
the specializations of expertise often carry over many prac-
tices from earlier, non-integrated, circuit technologics. The
layered accumulation of past practices has led to a situation
where most integrated system architects are unable to un-
derstand cireuit layouts, and most layout designers are un-
able to understand the function of the chip as a whole

All these factors-—-the different design domains, the
evolution of the underlying fabrication technologies, and the
different specialized divisions of expert practice—have led to
a state where design practices appear to be extremely com-

THE AT MAGAZINE Summer 1982 5

practitioners

artifacts
of practice

G x® x

T -]

Figure 2

Knowledge diffusion and evolution This figure shows two competing technologies (e g, sailing

ships and steam ships) labeled A and B Social historians of technology (Sahal, 1981) measure the population
of practitioners and their artifacts over time In this example, technology B is gradually displacing technology
A as indicated by the size of the population diagrams and by the slope of the S-curve on the right Actual
diffusion of technology can follow more complicated patterns as new areas open up, and as groups displace

each other or expand to compete in other areas

plex and in a constant state of tumultuous change (if com-
plexity is measured by summing the observed knowledge, and
change is measured by the differences in knowledge observed
over time).

From the perspective of conventional thought in the
knowledge engineering communitly, such a problem domain
is not ready for an expert, system. The knowledge is chang-
ing too rapidly, and community practice is too fragmented.
Across clans, practice and knowledge vary radically and
there is a widely shared belief that there are many open ques-
tions and opportunities for developing design methods. If
durable expert knowledge about how to design VLSI systems
exists at all, it has not been widely recognized in the design
commmunity. This lack of convergence is in conflict with the
conventional approach to building expert systems, which as-
sumes that the knowledge exists and that it is feasible to
find an expert who has the knowledge and can articulate
it in collaboration with a knowledge engineer (Feigenbaum,
1977; Barstow and Buchanan, 1981; Duda and Gaschnig,
1981; Davis, 1982).

Conventional knowledge engineering, even as applied in
areas such as medicine, has historically dealt with selected
subsets of knowledge that are relatively stable over time,
and that are not highly fragmented into different clusters of
specializations carried by competing clans By repeated ap-
plication of these conventional methods, the field has evolved
a thought style that fails to recognize the presence and
significance of the fragmentation, competition, and transfor-

THE AT MAGAZINE Summer 1982

mation phenomena inherent in the underlying evolution of
the knowledge itself.

The Design of Design Knowledge

Over the past three or four years, a new clan of VLSI
system designers has been emerging, using design methods
described in the Mead and Conway text on VLSI design
(Mead and Conway, 1980) Courses based on this book
are now offered in over one hundred universities and by
a number of commercial training organizations. As Mead-
Conway designers have succeeded in completing interesting
designs in substantially less time than practitioners of other
methods, the phenomenon has attracted considerable atten-
tion (Marshall, Waller, and Wollf, 1981), and the methods
have propagated rather rapidly

It is from the success of the Mead-Conway work on the
design of VLSI design methods that we gain confidence in
the new line of thought stressed in this article, namely, that
knowledge can be designed, and that reusable principles can
be developed for the principled practice of knowledge en-
gineering (see Fig. 2)

The Mead-Conway methods can be visualized as a cover-
ing by one simple body of knowledge of the previously
separate bodies of knowledge used by the system architect,
logic designer, integrated circuit designer, and chip layout
designer. Those existing layers of specialized knowledge had
incrementally accumulated over many years, without reor-
ganization;, while tracking a large accumulation of technol-

ogy change. Mead and Conway seized the opportunity in-
herent in the accumulated technology for a major restruc-
turing and redesign of digital system design knowledge.

When using the methods, an individual designer can con-
ceptualize a design and make all the decisions from architec-
ture to chip layout. Furthermore, it becomes possible to
explore the design space and optimize an overall design in
ways precluded when the design is forced through the usual
sequence of narrow specialties. The new knowledge is ap-
plicable in a wide variety of design domains. We suggest that
the knowledge embedded in this method gives practitioners
a cognitwe advantage, characterized as a simpler cognitive
mapping from architectural concepts down through layouts
in silicon. We will return to this claim and its implications
in the next section.

Conway has given an account of the process hy which the
textbook and the new methods were created, tested, and then
integrated into the design community (Conway, 1981). Much
of that account deals with ways of refining new methods by
promoting their experimental use in the design community,
and then responding to feedback from designers. A great
deal of novel infrastructure was created to encourage the
substantial amount of exploratory use required to debug,
evaluale, and refine design methods, and to stimulate the
diffusion of methods into the engineering community. The
ideas for creating and refining methods per se were described
anecdotally in terms of a generate-test-revise cycle.

The Mead-Conway example illustrates the deliberate
design of a system of knowledge intended to replace an ex-
isting body of ad hoc design practice. Conway’s account
deals mainly with the social dimensions of the phenomenon—
the evolving demographics of the knowledge during its test-
ing, refinement, and propagation. As part of a recent
knowledge engineering enterprise, we have begun {o ob-
tain interesting insights into properties of the Mead-Conway
knowledge itself We have also begun to further engineer
that knowledge under the guidance of certain new prineiples.
These knowledge engineering activities are the subject of the
following sections of this article.

Developing Principles for the
Engineering of Knowledge

The VLSI System Design Area at Xerox PARC and the
Heuristic Programming Project at Stanford University have
undertaken a collaborative Knowledge-based VLSI Design
(KBVLSI) Project. The aim of the project is to explore
possibilities for application of AT methods and expert system
technology towards the creation of an expert assistant for
the VLSI designer. The project’s leaders considered this
to be a diflicult application area, one that would test the
state-of-the-art of expert system technology. On the other
hand, VLSI design was also seen as an application area of
strategic importance, one that promised great leverage of
any successes that might occur.

Because of the observations discussed above, the project
leaders chose to focus on mechanization of the Mead-Conway
VLSI design methods. When the project began, that design
community had not produced a formal body of design
knowledge, from the knowledge engineering point of view.
The community’s methods were relatively simple, and a
descriptive textbook existed. Most of the embedded knowl-
edge was informal, and was communieated in the traditional
manner—by way of examples.

It was clear from the examples that the designers worked
within multiple design levels ranging from abstract system
descriptions to chip layouts, However, most of the levels were
not recorded in a formal notation, and were only informally
shared within the design community. During KBVLSI project
efforts to formalize these abstraction levels, we gained insight
into how certain of the levels were different from those tradi-
tionally used in integrated circuit design. We then began to
study the general properties of sets of abstractions, hoping
to find bases for comparing and understanding the relative
utility of different sets of abstractions, and to perhaps even
find principles for designing sets of abstractions. In this sec-
tion we describe some results of that study.

The combinatoriecs of problem decomposition
The importance of effective problem decomposition for tam-
ing large search problems has been recognized in Al for many
years. This idea was quantified by Minsky, who explained the
combinatorial advantage of introducing planning islands for
reducing search by what he called a “fractional exponent:”

In a graph with 10 branches descending from each node,
820 step search might involve 10%° trials, which is out of
the question, while the insertion of just four ... sequential
subgoals might reduce the search to only 5 X 10* trials,
which is within reason for machine exploration. Thus
it will be worth a relatively enormous effort to find such
“islands” in the solution of complex problems. Note that
even if one encountered, say 10° failures of such proce-
dures before success, one would still have gained a fac-
tor of perhaps 10'° in over-all trial reduction. (Minsky,
1961, pp. 441-442)

The islands in this example decompose the search into a set
of subproblems. Although the search reduction is dramatic,
it depends heavily on the placement of the islands. For
example, if the islands were located at levels 16, 17, 18,
and 19 in the tree, the search would still require 10'¢ trials.
Merely breaking a problem into subproblems is not nearly as
powerful as breaking it into well-spaced subproblems.
Languages and problem decomposition. Although
this enumeration illustrates the power of well-spaced sub-
problems, it gives no advice about how to find them. It is
intuitively clear that big steps are better than little ones, but
how do we find the steps? Must the decomposition process be
determined anew for every problem? This section presents
two ideas that bear on this. The first idea is that a language
that describes suitable abstractions of problems, can guide
the decomposition of problems into subproblems. This idea
can be iterated to yield an ordered set of languages providing,

THE AI MAGAZINE Summer 1982 7

intermediate abstractions The second idea is that the order
of the set of languages matters. The languages should be
arranged to yield a low degree of hacktracking in problem
solving When an ordering of languages can be found that,
provides low backtracking across a broad spectrum of prob-
lems in a domain, the languages can be used to effectively
guide problem decomposition in the domain.

The first idea can be illustrated by the problem of {inding
a route from Palo Alto to the San Francisco Airport. A
methodical street at a tame approach would search a widen-
ing cirecle of city blocks until the airport was found. In con-
trast, if a map is available that shows only main roads and
connections, then the search can be confined to the points on
the map. The map helps us to decompose the original prob-
lem into separate routing subproblems through intermediate
points (e.g., Embarcadero and El Camino, the Embarcadero
entrance to the Bayshore Freeway, and the airport exit from
the Bayshore Freeway). The search of the map can be ex-
pressed in terms of a language whose “terms” are the points
on the map and whose “syntax” is the set of rules for con-
necting adjacent points into routes Such languages should
preserve some important characteristics of the problems, but
suppress much of the detail For example, the map would be
of no use for decomposing problems if it failed to show the
freeway exits, or if it showed minor streets but omitted the
main traffic arteries

This idea of abstraction can be applied iteratively in
problem solving, as in the hierarchical planning systems
reviewed in Stefik, Aikins, Balzer, et al., (1982). Abstrac-
tion can take several forms, such as detail suppression, or
implementation relationships. We use the term implementa-
tion to indicate relationships between abstract constructs of
completely different types In such cases it is convenient for
the abstraction levels to be reified in terms of distinet lan-
guages. Search reduction results when there is an ordered
sequence of languages such that an abstract construct can
be implemented in terms of expanded constructs at lower
levels The search for candidate solutions in the abstract
languages, and the early elimination of some of them, yield
substantial economies for problem solving. By eliminating a
particular abstract construct from consideration, a problem
solver avoids pursuing the members of an equivalence class
of detailed solutions

Even if an abstracted problem is not a perfect mor-
phism of the original, its solution may prove useful as a
guide. What matters is that a language (or ordered set
of languages) provides a guide to decision making so that
the average retraction of deecisions is low. For example, in
multiple languages for a top-down design process, each lan-
guage lacilitates the composition of constructs that need
to be implemented in the language at the next level down.
Typically, much knowledge must be brought to bear in mak-
ing the implementation decisions In any particular prob-
lem, knowledge gained during the implementation process
may suggest the need to reconsider some of the decisions
made at a higher level, that is, a repartitioning of sub-

8 THE Al MAGAZINE Summer 1982

problems. For languages to be generally effective across prob-
lems in a domain, the relative rate of such retraction must
be low. This amounts to a uniformity requirement on deci-
sion making -on average, the same kinds of decisions must
be critical for all problems, so that making them first will
efficiently guide problem decomposition.

When the languages successfully guide the partitioning
of subproblems, we say that the languages exhibit the plan-
ning 1sland effect. We claim that the influence on a problem
solver is akin to that proposed in the Whorfian hypothesis-
language shapes the patterns of habitual thought (Whorf,
1956). For example, a designer who systematically carries
a design through several implementations in different lan-
guages is guided by an “invisible hand” that determines the
kinds of decisions thal are made at each step

A comparison of design methods In creating their
textbook, Mead and Conway worked to simplify VLSI design
practice by reducing the amount of knowledge required,
and by restructuring the form of the knowledge. Tradi-
tional integrated circuit design processes have four levels of
specialization System architects perform the highest level
of design, specifying the function blocks, registers, and data
paths of a design The next level is carried out by logic de-
signers, who work out, the details of the logic implementing
the functional blocks. Circuil designers then specify the cir-
cuit devices and interconnections to be used to implement the
logic designs. Finally, layout designers specify the geometric
patterns to be conveyed into the various layers of the in-
tegrated circuit chips to implement, the devices and intercon-
nections. Implicit in this division of labor is a set of informal
abstraction levels, one per specialty, that convey a planning
island effect into the design process (see Fig. 3).

In contrast with traditional practice, the Mead-Conway
methods bypass the requirement for Boolean logic gate rep-
resentation as an intermediate step in design They thus
eliminate an unneeded step in the design process, a step that
often introduces unwanted complications while precluding
important design constructs. The methods also advocate the
consistent use of simple charge-storage methods instead of
cross-coupled gates for saving state between register transfer
stages A simple “primitive switches” design step, which can
generate not only logic gates when needed, but also steering
logic and charge-storing registers, replaced both the logic-
gate step and the detailed electrical circuit-design step of pre-
vious methods Mead and Conway also proposed simplified
electrical models, timing models, and layout rules for guid-
ing design under the resulting methods. The methods are
sufficiently simple to learn and to use so that an individual
designer can now rapidly carry a design from architecture
to layout in silicon, whereas previously a team of specialists
would have bheen required.

We hypothesize that further analysis of the new sys-
tem of abstraction levels embedded in the Mead-Conway
methods, as contrasted with the traditional levels, will reveal
the sources of the advantages of the methods in terms such
as the planning island eftect. However, in order to conduct

INFORMAL ABSTRACTION LEVELS FORMALIZED LEVELS
] [3
| | 1
4 4 4
T 1 I
Traditional M-C M-C
More
Functionai Functianal LMA Abi"“'
Blocks Blocks
Register Register
Transfer Transfer CRL
Logic
Design Switches cPS
Circuit And Wires
Design
L ¢ M-C M-C y
ayou Layout Layout More
Detailed
Figure 3 Comparison of relative placements of abstraction levels

The sequences of levels are shown for traditional IC design methods,
informal Mead-Conway methods, and for re-engineered, formalized

Mead-Conway methods

such analyses, and also in order to embed the methods in an
experl system, we must formalize these abstraction levels.

Creating synthesis languages. The design practices
described in the previous section are largely informal, both in
the Mead-Conway methods and in more traditional methods.
By this we mean that the rules of design are not written
down in terms of a formal language having precise rules of
syntax Although informal notations seem to accommodate
open-ended specifications, they are usually inadequate as
documentation, either for a designer of a large project, or
for teams of designers.

Many formal languages for describing hardware have
been proposed. For example, there are many proposed
logic descriptions and register transfer descriptions in the
hardware description language literature. However, these
hardware description languages have had very limited accep-
tance in actual design practice. We believe that the reason
for this is that the languages were designed for the wrong
purposcs. They were designed for documenting, describing,
and verifying the properties of ezisting hardware.

These observations lead us to take a closer look at the
properties of notations used in the integrated circuit design
culture. One widely used formal notation in integrated cir-
cuit design is the artwork or layout notation. This notation
describes integrated circuits in terms of “colored rectangles”
(representing material on a chip) that can be composed to
build up large designs. Combined with the layout notation is
a set of composition rules, called layout design rules. Designs
created under these rules are guaranteed to have adequate

physical spacing on a chip.

The layout language has several important properties
which make it useful for the synthesis of designs First,
primitive terms can be combined to form larger terms and
subsystems (“design by composition”) Second, there are
rules of composition that define the allowed compositions of
thesc terms These rules apply both to composite objects
and primitive terms. Third, there is a well characterized
sct of bugs that are avoided when the composition rules arec
obeyed. At the layout level, these bugs correspond to thc
function and performance problems caused by inadequate
physical spacing. The composition rules provide a simple
shallow model of composition that is based on a deep model of
electrical properties and fabrication tolerances (Lyon, 1981).

With these properties in mind, we have created the set
of synthesis languages characterized in Figure 4. The set
of languages can be viewed as a re-engineering and then
formalization of the Mead-Conway abstraction levels, with
the inclusion of a new type of top abstraction level (see
Fig. 3) Each language provides a vocabulary of terms and
a set of composition rules that, define legal combinations of
the terms. The concerns of each language are characterized
by specific classes of bugs that can be avoided when the
composition rules are followed.

Collectively, the synthesis languages factor the concerns
of a digital designer. (See Stefik, Bobrow, Bell, et al., 1982 for
a discussion and more details) The linked module abstrac-
tion (LMA) language is concerned with the sequencing of
computational events. It describes the paths along which

THE A1 MAGAZINE Summer 1982 9

Description Composition Bugs
Level Concerns Terms Rules Avoided
Linked Event Modules Token Deadlock
Module Sequencin Forks Conservation Data not
Abstraction g Joins i
str MA Buffers Fork/Join Rules Ready
Clocked Stages A Mixed Clock
Registers Clocking Connection Bugs
and L.ogic Register Transfer of Stages Unclocked
CR 2 Phase | Transfer Functions Feedback
- Pull-Ups Connection Charge
Sﬁ?g!‘tﬁ,‘é Digital Pull-downs of switch Sharing
Switches Behavior Pass networks Switching
cPy Transistors Ratio Rules Levels
Physical Colored Lambda Spacing
Layout Dimensions Rectangles Rules Errors

Figure 4

Synthesis languages of an expert system for aiding VLSI design Each language has a set

of terms that can be composed to form systems and a set of composition rules that define legal
combinations of the terms The concerns of each language are characterized by specific classes of
bugs avoided when the composition rules are followed

data can flow, the sequential and parallel activation of com-
putations, and the distribution of registers. The LMA level
provides a simple covering of ideas from many sources includ-
ing Petri nets and the design of speed-independent modules.
The LMA composition rules preclude bugs of starting com-
putations before the data are ready, and deadlock bugs that
arise from the use of shared modules. The clocked registers
and logic (CRL) language is concerned with the composition
of stages of combinational logic and registers. The CRL
rules preclude various bugs related to clocking in a two-phase
system The clocked primitwe switches (CPS) language dis-
tinguishes between different uses for logie, such as steering,
clocking, and restoring, and is concerned with the digital be-
havior of a systemn The composition rules of this language
prevent bugs of non-digital behavior caused by charge shar-
ing and invalid switching levels.

The characteristics of {hese synthesis languages stand in
contrast to the hardware description languages (i e , analysis
languages) mentioned earlier. The logic deseription lan-
guages are Loo isolated and the register transfer (RT) lan-
guages are incomplete and insufficiently formalized. For
example, it is diflicult to find clocking specifications in a
typical RT description. The composition of partial RT
descriptions does not yield a test of correctness for clocking.
Those hardware description languages provide no cotnposi-
tion rules, optimization rules, or bug characterizations, and
fail to provide enough leverage for designers.

We believe that the practice of creating synthesis lan-
guages for different design domains may eventually be un-
derstood in terms of a relatively small number of common
principles. To return to the map example, the process of

10 THE AT MAGAZINE Summer 1982

making maps is not radically different, for different cities
Our search for such abstract synthesis languages has been
aided by our interest in their formal properties. For example,
the articulation of nearly independent concerns arises, in
part, from generalizing about categories of design bugs. The
characterizations of design bugs arise from the articulation
of composition rules. The composition rules arise from the
need to determine when the compositions of terms are valid.

Quantifying the abstraction power of synthesis
languages. Given a set of synthesis languages, we would like
to be able to quantify their utility for creating well-spaced
planning islands. The spacing of wslands is a metaphor for
branching factors between levels. We have found it useful
to define two such factors, termed the choice factor and
the expansion factor The choice factor is a measure of
the alternatives in decision making. It is defined as the
average number of possible alternative implementations for a
primitive term at the next lower level. The expansion factor
is a measure of the expansion of detail. 1t is defined as the
average multiplicative increase in the amouni of information
for specification of a primitive term at the next lower level
If there are typically 20 ways to implement an LMA term in
CRIL and the average increase in the amount of information
is 200, then the choice factor is 20 and the expansion factor
is 200 (sce Fig 5)

In the Minsky example for computing the power of plan-
ning islands, we saw factors on the order of 10. When the
computation is extended to consider multiple levels, the fac-
tors for the individual pairs of levels can be multiplied to
obtain factors for the entire sct of languages For example,
with four levels an average choice factor of 22 provides a
total choice factor of 10*

synthesis language leveis

L— choice factor = 3 L

expansion
factor ~ 20

(area ratio)

is1
s l
\\\\§§§ is2

Figure 5 Choice and expansion factors for synthesis languages The choice
factor and the expansion factor are two measures of the abstraction power
of a synthesis language The choice factor measures the number of alternatives
in decision making, and the expansion factor measures the expansion of detail
For an ordered set of levels, the total choice and expansion factors of the set
correspond to the products of the individual factors

Accurate quantifications of the choice and expansion
factors of the synthesis languages being developed for the
KBVLSI project are still a ways off and it is clear that
the quantification of these lactors depends on a careful
information-theoretic analysis As we complete our knowl-
edge bases and expand our experience with these levels, we
will be interested in developing systematic means of applying
the new measures to our work, and will perhaps further tune
our abstraction levels in response to the results.

Examples of the Engineering of Knowledge

By suggesting that knowledge is subject to design, we
place knowledge engiueering among the sciences of the
artificial (Simon, 1981). Designed objects are artificial in
that they are man-made and shaped to suit a designer’s pur-
poses for use in some cnvironment As an engineering prac-
tice develops, engineering principles emerge that account for
the constraints imposed by designer goals and an environ-
ment. Since there can be antagonistic goals (Tong, 1982),
the principles need to account for examples of tradeoffs. Al-
though no substantial hody of knowledge engineering prin-
ciples has yet been articulated, a partial picture of some of its
elements is starting to appear. This section presents several
examples of the engineering of knowledge from the KBVLSI
project, and the reasons for the shaping of knowledge that
we have found compelling. These examples suggest that a
reusable body of practice may eventually emerge

Example: Composition and optimization. The
“design by composition” model characterizes a design process
that is dominated by the composition of terms. The terms
can be primitive in some synthesis language, or they can
be previously created composite terms known to be correct
(relative to some classes of bugs). Observations of prac-

ticing system architects and circuit designers confirm that
this technique is a significant part of typical practice. This
section argues that knowledge about design should be en-
gineered to separate composition knowledge from optimiza-
tion knowledge (see Fig. 6).

The following composition rule about clocking is taken
from rules at the CRL-level:

Data outputs from a stage must be valid during the
opposite clocking interval than the data input to that
stage

This rule, combined with others, prevents creation of stages
having distinet input lines holding data valid on different
clocks (mixed clock bugs) and also creation of unclocked
feedback loops. This insures correct alternation of clocks on
successive stages as shown in Figure 6a. Figure 6b shows two
versions of a circuit for a memory cell. The optimized version
omits a clocking switch, thus violating a composition rule.
But, given some assumptions about output line loading and
clock speed, the optimized circuit can be shown to be correct.
The proof observes that a signal going through two inverters
is restored to its original value. A more general form of
the argument would accomodate any “identity transform”
(e.g., as implemented by an even number of serially-connected
inverters) The composition rule by itself employs the worst
case assumption that data changes on lines, and misses this
optimization. If the composition rule had to account for all
possible optimizations, it would need many more ezception
clauses as in:

All of the data inputs to a stage must be valid during the
high interval of the same clock unless (1) they are derived
from an unclocked stage yielding an identity transform
and the loading of the line is . and the capacitance is
less than ... and the speed of the unclocked stage is ...
or (2). .

THE AT MAGAZINE Summer 1982 11

Straight-forward Phi1*Ld

IO T TR L
- [] || | Phi1*Ld
Sequence of Stages S
-
Phi 2 Phi 2
Optimized Version Phi1*Ld
Phi 1
Phi1*Ld
L
Sy NN
Clocked Feedback Loop Clocking Switch
Figure 6 Optimization example from the CRL level Figure 6a shows the usual composi-

tion of stages at the CRL level The lines labeled Phil and Phi2 represent clock lines The
key observation is that the clock lines alternate for successive stages Figure 6b shows two
versions of a memory cell circuit The optimized version violates the composition rule The
text argues that the optimization of the cell is correct, but that its correctness depends on
properties of the memory circuit that are not true in general The price of simplicity in the
composition rules is that they make worst case assumptions But later optimizations

can take account of special cases

A serious disadvantage of this approach is that it dumn-
1shes the leverage conferred by multiple abstraction levels
Verifying the optimization clauses in the complicated form
of the rule is not generally possible from only a CRL descrip-
tion, because the capacitance information is not known un-
til another level of implementation is done (a layout). As a
consequence, designs could not always be verified to be free
of clocking bugs at the CRL level. This would diminish the
effectiveness of the CRL level in producing planning islands.

An alternative is to use the simple composition rules
and to have a separate pass in the design process that uses
optimization rules Lo identify and introduce optimizations.
This has several advantages By keeping the composition
rules simple, it is easier to get them right, because the special
cases are isolated We have found examples of optimization
conditions like these at every level of description in our work.
In most cases, an optimization combines information from
more than one of our description levels.

The factoring of optimization knowledge helps to defuse
the argument that “simplified bodies of knowledge must, miss
something.” Our approach to this is to first formalize the
knowledge in terms of languages, for which we can be precise
about exactly what they cover. The languages can then be
engineered to have appropriate properties for synthesis, as
discussed in the previous section. Finally, separate bodies of
optimization knowledge can be developed that extend the
total coverage of the design knowledge by characterizing
opportunities for performance tuning.

12 THE AI MAGAZINE Summer 1982

This example of the engineering of design knowledge il-
lustrates the influence of a problein solving model on the ac-
quisition and design of knowledge The current framework
admits the possibility of an approach to design that separates
concerns of functional corrcetness (via composition) from
performance tuning (via optimization). This reflects cogni-
tive economics by enabling the cffective use of planning is-
lands in composition, and by admitting a design process in
which only the critical portions of a design are optimized.

Example: Coverage and simplicity. Two important
attributes of a body of knowledge are its coverage and its
simplicity By coverage we mean a measure of the cases in
the field of interest for which the knowledge is adequate. In
design knowledge for VLSI systems, coverage refers to the
kinds of digital systems and integrated circuit technologies
that can be adequately characterized

The search for simplicity 1is
(e.g., Occam’s razor). In our knowledge engineering, we have
employed several kinds of simplicity measure:

endemic in science

1 basis stmplicity—the number of kinds of basic ele-
ments;

2 expression simplicity —the length of the average (most
common) expressions;

3. composition stmpheity—the number and simplicity of
the rules for combining terms with other terins

The first measure is used when we try to reduce the number
of primitive terms by defining some constructs in terms of
others. The second measure is used to counteract excessive

ALL/ALL FORK-JOIN

SELECT/ANY FORK-JOIN

ANY/ANY FORK-JOIN

>
[+~]
(2]

Key

I

'

Figure 7

Common fork-join combinations used in the LMA language

Forks are elements that map control and data from one module to many

modules
trees in the examples above

They are annotated graphically as the downward-branching
Joins map control and data from many

modules to one module The all/all combination is used to start a set

of operations going in parallel

It indicates completion after all of the

operations are complete The any/any combination starts one of several
operations and finishes when it is complete A select/any combination

uses a key to select a particular operation

It is used to implement

if-then and case statements in the LMA language

usc of the first measure For example, we would argue for
the continued use of A (conjunction) and V (disjunction) in
introductory logic courses in spite of the fact that logical
expressions can be written with fewer kinds of terms using
less familiar connectives. The third measure attempts to ac-
count for the interfacing effects in the design by composition
model. Terms should be excluded if their composition rules
are excessively baroque

These concepts about coverage and simplicity can be il-
Justrated by the knowledge engineering of elements of the
LMA language (Stefik, Bobrow, Bell, et al., 1982). The
LMA language provides a formal means for synthesizing digi-
tal systems in which the sequencing of operations is given
primary attention. The sequencing is specified in terms of
modules that carry out instructions and links between them
that determine the flow and control of information. Flow
of control is described in terms of a token-passing protocol
between elements. Forks are a type of link that enables one
module to pass data and control to several other modules
(fanout); joins are a type of link that combines data and

control from several modules into one (fanin). Forks and
joins are typically used in fork-join combinations as shown
in Figure 7.

The selection of the {orks and joins included in the LMA
language was intended to provide a small basis set of ele-
ments with substantial coverage. In the current set four
kinds of forks (any-fork, all-fork, synchronizing-all-fork, and
select-fork) and two kinds of joins (all-join and any-join) are
included The fork and join vocabulary is interesting from
the knowledge engineering point of view in that it illustrates
some of the kinds of arguments that can he used in deciding
what to include in a description language. These arguments
arose in the consideration of the possible kinds of “select-
forks” for LMA. At one point, we created a chart of possible
characteristics as follows:

Possible Selection Characteristics

1 Outside selection by key.
2 Self-selection by ready status

3. Priority-based selection by precedence rules

THE Al MAGAZINE Summer 1982 13

Possible Synchronization Characteristics

1 All scleetees started at once

2 Selectees started when ready

Possible Termination Characteristics

[At least. IV selectees activated.

2 No more than N selectees activated

In the current LMA model for select-forks, we chose
“outside selection by key” as the sclection characteristic and
“exactly one sclectee activated” as the termination condi-
tion If we allowed more than one module to be selected
by ils ready status, a select fork would start an unpredict-
able number of modules, perhaps dependent on timing.
This would also mean that seleet-forks would not couserve
tokens We have discovered that the rules for compos-
ing non-token-conserving elements are remarkably baroque,
and that designs that use such elements scem considerably
more difficult to understand (composition ssmpheity). Most
of the design examples that we considered could be easily
described using only the simple token-conserving version of
the select-fork The common cases are analogous to uf-then
and case statements in conventional programming languages
(expression sunplicity). In addition, the more complex varia-
tions of the select-fork can be described in terms of the
simpler version and other LMA elements (basts simplicity)

Example: Embedding practice in synthesis lan-
guages Stacks are lamiliar storage devices that provide
last-in-first-out. access to data They are basic to many
fundamental algorithms in computer science There are a
variety of digital architectures that can be used to create
stacks (c.g., Guibas and Liang, 1982) For example, one
architecture is like a soltwarc implementation, and uses a
counter Lo keep track of pushes and pops. Another architec-
ture uses “marker bits” instead of a counter, to mark the
top of the stack. Other architcetures resemble large shift,
registers which either shift the data all at once, or allow it
o ripple [rom one end to the other during pushes and pops
These architectures differ in ways that substantially cffect
the amount of storage needed, the amount of control logic,
the fanoul of the control lines, and the performance charac-
teristics of a large stack

We observe that practicing designers do not share a
conunon architectural notation adequate for synthesizing or
describing these examples. This gap in design knowledge
often makes it difficult to share or understand designs. The
LMA notation appears expressive enough to admit architec-
tural comparisons and abstract enough to provide leverage
for exploring design alternatives. For example, all of the
stacks mentioned above have been described in LMA (Stefik,
Bobrow, Bell, et al., 1982). I'rom these descriptions one can
answer such questions as “how much storage is needed per
clement of capacity?”’, “what fanout of control logic is ve-
quired?”, and “what determines the minimum delay between
successive push commands?”

14 THE AI MAGAZINE Summer 1982

The availability of languages can provide opportunitics
for representing hodies of ad hoc practice For example,
to describe the design of bit serial circuits for implement-
ing digital filters, one would begin by collecting exainples of
the design practice. This practice would be partitioned into
primitive and composite terms, and composition methods
drawn from the ad hoc fragmenis In this example, the
practice would include a set of composition rules for com-
bining active elements and bullers according to data rate
requirements, as well as some theory about the tradeolls
in this design arca. A language like LMA would be used
to describe the components. Composition knowledge and
tradeoff knowledge would be described in other suitable lan-
guages. Throughout this process a knowledge engincer tries
to identify concerns that can be isolated and details that can
be suppressed. The example illustrates two points:

1 one can describe the terms of an architectural prac-
tice as constructs in a synthesis language like T.MA,
and

2 onc can augment the practice and create an cm-
bedded architectural language by also creating com-
posttion rules for the terms

The base languages simplify the process of representing the
specialized languages

Significance of these examples. Our interest in for-
malizing knowledge about VLSI design is akin to other cur-
rent efforts in AT aimed at formalizing particular hodies of
knowledge, such as the physics of fluids (Ilayes, 1979) or
reasoning about time (e.g., Allen, 1981) This article has
heen concerned with the design of a body of knowledge in
order to give it particular propertics

The examples above illustrate that kunowledge can be
engineered Lo meet particular objectives Sometimes there
are tensions between multiple objectives in the design of
knowledge. The composition and optimization example il-
lustrated a tension between simplicily and coverage We
sought to keep knowledge simple to facilitate composition,
without sacrificing coverage of special cases essential for cir-
cuit performance Our approach was to partition the com-
position knowledge from the optimization knowledge so that
they can be applied separately.

The second example illustrated three measures of sim-
plicity that can be employed in the design of synthesis lan-
guages These measures reflect a tension between minimizing
the number of primitive elements in a language, and keeping
short the length of common expressions in the language.

The third example illustrated the idea that design prac-
tice can be systematically embedded in synthesis languages,
when there is an appropriate match between the important
distinctions in the practice and the features emphasized in
the language.

These examples also illustrate progress in coping with
the difficulties discussed in the first section of this article In
that section we noted some characteristics of VLSI design
that made prospects for expert systems scem premature
given the conventional methods of knowledge engineering.

(i) measure® of practices,
without KE

(ii) measure® of practices,
with KE appliedto B

It C&D;\B Oilg 8 %ta
l ,/ \ ’ t , 4
|y, ® . o 0. time

*practitioners or artifacts

Figure 8

Knowledge engineering mediating the transformation of knowledge The processes that underlie

the diffusion of technology and knowledge depend on a variety of factors including properties of the knowledge
itself Does it provide economic advantages? Is it too complex to apply? Can it propagate through a
particular culture? Knowledge engineering can potentially augment the infrastructure in which these natural
transformation, displacement, and diffusion processes operate

The main difficulties were fragmentation of the design com-
munity and rapid evolution of the design knowledge. The
fragmentation problem can be eased by the use of common
languages to represent digital systems in uniform notations.
The rate-of-change problem can be eased by the use of lan-
guages for abstraction which cover the range of concerns of
existing design methods, and which provide insulation from
changes in fabrication technology. In contrast, the libraries
of standard layout-level cells in current CAD systems are ob-
soleted quickly by changes in technology. In a multi-level ap-
proach, libraries of abstract constructs will span many tech-
nologies, and only the implementation rules need be changed
as technology shifts.

Speculations on the Potential Impact
of Knowledge Engineering

Some Al researchers (e.g., Nilsson, 1982) caution against
too great an involvement with the knowledge of “expert”
ficlds, lest, AT rescarchers lose their identities by becoming
absorbed by the fields. In contrast, we sense opportunities
in substantial involvement The struggle to formalize and
mechanize knowledge in difficult problem areas can strongly
stimulate the produection of new hypotheses regarding the
foundations of AT and knowledge engineering. Such problem
areas also provide empirical contexts for the experimental
testing of those new hypotheses.

Our examples of the engineering of knowledge have
highlighted roles for AI specialists. In particular, we have
focused on opportunities for exploiting synergy between re-
search on knowledge acquisition and research on problem

solving processes. There are possibilities, however, for a
much wider range of participation in knowledge engineering.
Practitioners in a particular field can apply the techniques to
the simplification and refinement of their methods, enabling
more efficient application and easier propagation of their
knowledge. Cognitive scientists can develop refined models
of human information processing by studying the process-
ing, propagation, and evolution of knowledge having known
properties. Al specialists, cognitive scientists, and social
scientists can collaborate to develop techniques of demog-
raphy, ethnography, and analysis for identifying areas of ad
hoc practice ripe for knowledge engineering

The generation, selection, and diffusion of knowledge
depend on a variety of social, ecological, and economic fac-
tors, including the properties of the knowledge itself. So-
cial structures often mediate the generation process through
complex membership and career feedback processes (Latour
and Woolgar, 1979). Social networks of knowledge car-
riers, sometimes invisible to outsiders, can provide a means
for rapid diffusion of new knowledge (Crane, 1972). Tech-
nological diffusion and displacement are increasingly being
scrutinized under quantitative methods, resulling in use-
ful new insights and models of the underlying cultural and
economic processes (Sahal, 1981) As we better understand
these natural processes, we can propose and test how they
might be modified by knowledge engineeering.

We believe that the merging of knowledge engineering
into the existing cultural infrastructure can enable great in-
creases in the rates and extents of knowledge generation
and diffusion processes (as suggested in Fig. 8). A com-
mon literacy regarding the representation and mechaniza-
tion of practical knowledge would encourage placement

THE AI MAGAZINE Summer 1982 15

of more effort into the design of knowledge, rather than
its routine application. Knowledge engineered for good
cognitive matching to receiving cultures will diffuse more
rapidly. Knowledge engineered for more efficient computa-
tional processing will provide cognitive advantages. Of
course, for these results to occur, the field of knowledge en-
gineering must itself successfully integrate into our culture
under the operation of natural displacement and diffusion
processes!

Special opportunities are presented when knowledge en-
gineering takes on bodies of knowledge of strategic im-
portance, such as design methods in critical technologies.
Design methods occupy a central cognitive position for
the engineer, much as systems of natural law hold for
the physicist. Periods of rapid knowledge displacement
among engineers correspond in form to the large-scale cogni-
tive model displacement-processes described by Kuhn (1962)
as shifts of paradigm in natural science. As enginecred
knowledge conveys advantages to its human and machine
carriers, the field could modulate and accelerate the cur-
rently ad hoc natural processes of knowledge generation and
diffusion. Our knowledge engineering explorations may ul-
timately help us to understand the causes, measures, and
indeed methods for initiating and controlling, large-scale
shifts in the production and application of knowledge

References

Allen, J F. (1981) An interval-based representation of temporal
knowledge IJCAI'T, 221-226

Barstow, D R., & Buchanan, B G (1981) Maxims for knowledge
engineering. Tech. Rep HPP-81-4, Computer Science Dept ,
Stanford University (Also AI Memo 10, Schlumberger-Doll
Research Laboratory, Ridgefield, Conn.)

Conway, L. (1981) The MPC adventures: Experiences with the
generation of VLSI design and implementation methodologies.
Proceedings of the Second Caltech Conference on Very Large Scale
Integration, 5-28 (Also reprinted as Tech Rep VLSI-81-2,
Xerox Palo Alto Research Center.)

Crane, D. (1972) Inusible colleges: Diffusion of knowledge in scientific
communitries Chicago: University of Chicago Press

Davis, R. (1982) Teiresias: Applications of meta-level reasoning.
In R Davis & D B Lenat (Eds), Knowledge-based systems in
artificial intelligence. New York: McGraw-ITill

Duda, R O, & Gaschnig, J G. (1981) Knowledge-based expert
systems come of age BYTE 6(9):238-281

16 TIHE AT MAGAZINE Summer 1982

Feigenbaum, I& A (1977) The art of artificial intelligence:
I. Themes and case studies in knowledge engineering IJCAI 5,
1014--1029

Guibas, L J., & Liang, F M (1982) Systolic stacks, queues, and
counters. Proceedings of the Conference on Advanced Research in
VLSI, 155-164.

Hayes, P J. (1979) The naive physics manifesto In D Michie
(Ed), Ezpert systems in the micro-electronics age 1idinburgh:
Edinburgh University Press.

Kuhn, T S. (1962) The structure of scientific revolutions Chicago:
University of Chicago Press

Latour, B, & Woolgar, S (1979) Laboratory lfe: The social con-
struction of scientific facts. Beverly Hills, Calif : Sage Publica-
tions.

Lyon, R. F. (1981) Simplified design rules for VLSI layouts
LAMBDA The Magazine of VLSI Design, First Quarter, 54-59
Marshall, M | Waller, I, , & Wolff, H (1981) The 1981 Award for

Achievement Electronics 54(21):102 105

Mead, C., & Conway, L (1980) Introduction to VLSI systems Read-
ing, Mass : Addison-Wesley

Minsky, M (1961) Steps toward artificial intelligence In E A
Feigenbaum & J Feldman (Eds), Computers and thought New
York: McGraw-Hill.

Nilsson, N J (1982) Artificial intelligence: Engineering, scicnee,
or slogan? The AI Magazne 3(1):2-9

Robinson, A I. (1980a) New ways to make microcircuits smaller
Science 208:1019-1026.

Robinson, A. L. (1980b) Are VLSI microcireuits too hard to
design? Science 209:258-262

Sahal, D (1981) Patterns of technological tnnovation.
Mass.: Addison-Wesley

Simon, H A (1981) The sciences of the artificral (2nd ed) Cam-
bridge, Mass : The MIT Press

Stefik, M., Aikins, J, Balzer, R , Benoit, J , Birnbaum, L., Hayes-
Roth, F., & Sacerdoti, E (1982) The organization of expert
systems: A prescriptive tutorial Artsficial Intelligence 18:135-
173

Stefik, M, Bobrow, D, Bell, A, Brown, H, Conway, L., &
Tong, C. (1982) The partitioning of concerns in digital system
design Proceedings of the Conference on Advanced Research in
VLSI, 43-52.

Tong, C (1982) A framework for design. Memo KB -VI.SI-82 16
(Working paper), Knowledge-based VLSI Design Group, Xerox
PARC

Whorf, B. L (1956) The relation of habitual thought and be-
havior to language In B. Whorf, Language, thought, and reality
Cambridge: Technology Press

Reading,

