
ON THE
RELAmONSHIl?

BETWEEN STRONG
AND WEAK PROBLEM

SOLWRS
George W. Ernst

Computer Engineerzng and
Science Department

Case Western Reserve Universzty
Cleveland, OH 44106

Ranan B. Banerji

Department of Mathematzcs and
Computer Science

St. Joseph’s Unzverszty
Phzladelphaa, PA 19131

Abstract

The basic thesis put forth in this article is that a problem solver is
essentially an interpreter that carries out computations implicit in the
problem formulation A good problem formulation gives rise to what
is conventionally called a strong problem solver; poor formulations co*-
respond to weak problem solvers Knowledge-based systems are dis-
cussed in the context of this thesis We also make some observations
about the relationship between search strategy and problem formula-
tion

DURING THE LAST DECADE the distinction between strong
and weak problem solvers has been emphasized in the AI
literature. Weak problem solvers are those that are rela-
tively easy. Strong problem solvers, on the other hand, can
solve relatively difficult problems but are specialized to a
particular application domain. The usual explanation for the
performance of strong problem solvers is that they can bring
specialized knowledge from the application domain to bear
on the problem. This distinction between problem solvers
dates back to Newell (1969).

The question addressed in this article is “what is the
relationship between weak and strong problem solvers?” One
possible answer is that there are two different theories of
problem solving: one for weak problem solving, the other for
strong problem solving. We do not subscribe to this answer.

This research was partially supported by the United States Air Force, Some aspects of MYCIN don’t fit the problem reduction
RADC Contract F30602-82K-0045 paradigm as naturally as the above, of course. For example, a

However, if it is incorrect, there must be some relationship
between the two that allows them to live harmoniously within
a single theory. The nature of this relationship is the focus
of this article. In passing we note that the theory of weak
problem solvers has been well-developed for over a decade;
see Kilsson (1971) for example.

MYCIN as a Weak Problem Solver

To start off the discussion, let us make a statement just
to make a point: many expert systems can naturally be
viewed as weak problem solvers As a concrete example,
consider MYCIN (Shortliffe, 1976). Its state space is the set
of atomic formulae of the form

< predicate function >

(< object >, < attribute >, < value >)

Each MYCIN production can be viewed as an operator in the
problem reduction paradigm (Nilsson, 1971). For example,
the production “if A & B then C” corresponds to the operator
whose input state is C and whose output is the AND of the
two states A, B. The goal states are patient data such as the
results of lab tests.

THE AI MAGAZINE Summer 1983 25

AI Magazine Volume 4 Number 2 (1983) (© AAAI)

production whose action part is a conjunction of atomic for-
mulae corresponds to a separate operator for each atomic for-
mula in the conjunction. MYCIN’s search strategy effectively
applies such operators in a group. Certainty factors are best
viewed as an extension of the problem reduction paradigm
described in Nilsson (1971).

MYCIN’s search strategy is a variation of the depth-first
exhaustive search of AND / OR graphs described in Nilsson
(1971). Descendents of “unsolvable nodes” are pruned,
but descendents of “solved nodes” are not because MYCIN
searches for multiple solutions.

Many knowledge-based systems have a similar transla-
tion into the problem reduction paradigm, particularly if it
is extended by the addition of certainty factors. The thing
that makes the translation so natural is that the knowledge
base is often represented as a set of productions.

The above exercise shows that MYCIN is basically a weak
problem solver, ignoring all of the human engineering that
it possesses. That is, if we had a problem solver for the
problem reduction paradigm which used a depth-first search
and we formulated the MYCIN problem for it as described
above, it should exhibit essentially the same problem solving
capability as MYCIN. A similar analysis applies to many
other knowledge-based systems. Why is it, then, that they
are classified, and correctly so, as strong problem solvers?

Problem Formulation

The answer to this question is no surprise; it is the
same explanation found in the literature. The productions
contain lots of domain dependent knowledge to cope with
special problem solving situations. However, we still have
the apparent paradox that such problem solvers appear to
be weak, according to the above analysis.

Our thesis is that what really makes a problem solver
strong or weak is the problem formulation given to it. In the
case of MYCIN, a medical diagnosis / therapy problem has
been very carefully formulated for problem solving purposes.
This causes the depth-first search employed by MYCIN to
appear strong. An explicit statement of our thesis is:

It is the formulation of a problem that causes a problem
solver to appear weak or strong. The problem solver
itself is merely an interpreter which carries out the com-
putations implicit in the problem formulation

Hence, a good formulation of a problem gives rise to what
is currently called a strong problem solver; weak problem
solvers have poor problem formulations. It follows that a
single problem solver can be weak for some problem formula-
tions and strong for others.

Given this perspective let us look at the typical develop-
ment of a knowledge- based system. After talking to an ex-
pert for some period of time, the knowledge engineer comes
up with a formulation of the problem that looks reasonable
to the expert. Actual use of this problem formulation gives
results that the expert considers incorrect. The source of the

difficulty is that the initial problem formulation is incorrect
/ incomplete. This is remedied by modifying some existing
productions and adding some new productions.

Note that each production corresponds t,o a different
operator in the problem formulation (see previous section).
The operators of a problem or game correspond to our in-
tuitive notion of the “rules of the game.” Hence, what is
happening is that the knowledge engineer is playing a game
for which he doesn’t know that rules. The expert knows
the rules but he cannot tell them to the knowledge engineer,
probably because some of the rules are in the right half of the
expert’s brain. So the knowledge engineer continues playing
the game, making up the rules as he goes based on the advice
of the expert. To be explicit each modification of a produc-
tion modifies a rule of the game; adding a production adds a
new rule to the game. The end result is an explicit statement
of all of the rules of the game which is usually referred to as
the system’s knowledge base.

The above picture is consistent with Simon’s (1973) con-
tention that real world problem solving involves a lot of prob-
lem reformulation. In his model there are two basic kinds of
activity: conventional problem solving (of the type described
in Nilsson, 1971) and continual reformulation of the problem
being solved, based on new information generated by the
problem solving process.

The difference between Simon’s model and the hWCIN
effort is that the latter is attempting to generate a correct
/ complete formulation of the “medical game” once and for
all This is probably a good deal of what, is happening in
medical school; students are trying to assimilate the rules of
the “medical game.” Note that when a person sees chess for
the first time, it takes him a considerable amount of time to
assimilate the rules of the game even though they are stated
precisely. Of course, chess only has a few dozen rules as
compared to the hundreds of rules in MYCIN.

Problem Formulations and Search Strategies

In what has gone above we have emphasized only one
aspect of expertise / acquisition, i.e , that of getting a good
formulation of the “rules of the game.” This is not the
only kind of problem dependent knowledge used by a prob-
lem solver. Often its search strategy also contains prob-
lem dependent knowledge There is a strong interaction be-
tween these two kinds of knowledge because, for example, a
particular problem formulation may be appropriate for one
search strategy and not for another.

hflCIN not only uses a problem formulation which is
similar to that of a medical expert, it also uses a search
strategy which is similar to that of the expert. Hence its
problem formulat,ion is appropriate for its search strategy
The point is that one not only needs a good problem formula-
tion, but a search strategy which fits the problem formula-
tion must also be found. Using the problem formulation and
search strategy of an expert is a very practical way to develop
expert, limited domain problem solvers. Although this is an

26 THE AI MAGAZINE Summer 1983

important and very useful part of the AI, an equally impor-
tant part is to understand the nature of intelligent processes.
This section will emphasize the latter - how to find a prob-
lem formulation and a search strategy which fit one another.

Often we are given a problem formulation that is precise,
correct and complete, but yet it is not appropriate for any
reasonable search strategy. (We are ruling out strategies
such as a table of all possible states together with their
(optimal) solutions.) An example is Rubik’s cube, a puzzle
which is widely available, commercially. The difficulty is that
the search space implicit in the given problem formulation
seems to be too large and unstructured.

A typical strategy for solving Rubik’s cube is

1 get the top plane correct;

2 get the middle plane correct;

3. get the corner cubes in the bottom plane in the cor-
rect position but not necessarily correct orientation;

4 get the remaining cubes in the bottom plane in the
correct position but not necessarily correct orienta-
tion;

5 get the corner cubes on the bottom plane correct;

6 get the remaining cubes correct.

There are other strategies for Rubik’s cube but all that we
know of have the same form: get one set of cubes correct.
Then get another set of cubes correct without changing the
first set. Next get a third set of cubes correct without chang-
ing the first two, etc. Usually the first set is a face of the
cube.

There is a difficulty in using such search strategies: none
of the sets are invariant over most of the moves (operators)
of Rubik’s cube. The result is that in performing step z of
the strategy, you undo the previous i - 1 steps, unless you
are very careful. To deal with this difficulty one develops
sequences of moves which leave some of the sets of cubes
unchanged. For example, the top plane is invariant over some
move sequences. In applying such a move sequence, some
cubes in the top plane are actually moved. But whenever
this happens they are moved back to their original position
before the end of the sequence.

At each step in the strategy, move sequences are used
that leave the sets of cubes in the previous steps of the search
strategy invariant. This implies that a sufficient number of
such move sequences must be developed to allow an arbitrary
initial state to be solved. Korf (1982) has written a program
which generates such move sequences.

One can view this development of move sequences as a
reformulation of Rubik’s cube. In the new formulation each
move sequence is a single operator. This formulation of the
problem is good for the given search strategy if a sufficient
number of new operators have been developed. At each step
in applying the search strategy, the problem solver only uses
those operators which leave the previous steps in the search
strategy invariant. With the exception of the first step,
most of the operators will be the new operators generated in
reformulating the problem Different search strategies (e.g.,

different orders in which the cubes are fixed) may give rise
to different reformulation because the search strategies may
require different invariant properties for the operators.

This kind of problem reformulation was studied over a
decade ago by Amarel (1970); he called it “changing the
representation of a problem.” His macro-moves are the move
sequences described above.

The kind of strategy discussed above is a GPS (Ernst
and Newell, 1969) based strategy. Each GPS difference cor-
responds to the set of cubes in a step of the strategy. The
difference is present when one or more of the cubes in the set
are incorrect. The differences are ordered by the steps in the
strategy; i.e., the first difference to be removed corresponds
to step 1; the second difference to be removed corresponds
to step 2; etc.

So we see that the basic ideas in the above approach to
solving Rubik’s cube date back a long ways. Yet today we
do not know how to automate such problem reformulations
in a general way. Although Korf’s (1982) method does a
beautiful job in reformulating Rubik’s cube, apparently it
requires the differences to be state components such as the
position of a cube. For some problems such simple differences
are not sufficient. Goldstein has written a program (Ernst
and Goldstein, 1982) which can discover more complicated
differences that are appropriate for a given problem for-
mulation. The limitation of Goldstein’s program is that the
given problem formulation may need to be changed. Such
difficulties can only be avoided by looking for a good problem
formulation and good differences at the same time.

Conclusion

The basic thesis put forth in this article is that a prob-
lem solver is essentially an interpreter that carries out com-
putations implicit in the problem formulation. A good prob-
lem formulation gives rise to what is conventionally called a
strong problem solver; poor formulations correspond to weak
problem solvers. Of course, there is a whole spectrum of
strength corresponding to how good the problem formulation
is.

According to this view, much of what is conventionally
called a system’s knowledge base is really part of its problem
formulation. This implies that research on knowledge-based
systems is a form of research on problem formulation as
opposed to what is conventionally called problem solving.
We like this view because problem formulation is a “higher”
conceptual level than that of problem solving In fact, we
believe that this is the philosophical reason for the success
/ performance of knowledge-based systems - they focus on
a higher conceptual level than previous work in AI. From a
philosophical point of view it is very important to understand
the basic nature of such research.

Problem formulation is central to research other than
knowledge-based systems. Rubik’s cube was used to ex-
emplify the relationship between problem formulation and
search strategy. This relationship must be taken into account

THE AI MAGAZINE Summer 1983 27

in looking for either a good problem formulation or a good
search strategy. For this reason the mechanical discovery
of either one should be done together with the mechanical
discovery of the other.

References

Amarel, S. 1970. On the representation of problems and goal-
directed procedures for computers. In R. B. Banerji and M
D. Mesarovic (Eds.), Theoretical approaches to non-numerical
problem solving. Springer-Verlag, 197-244.

Ernst, G.W. and Goldstein, M.M. 1982. Mechanical discovery of
classes of problem-solving strategies. Journal of the ACMVOL:l-
23.

Ernst, G.W. and Newell, A. 1969. GPS: A case study in generality
and problem solving. New York: Academic Press.

Korf, R.E. 1982. A program that learns to solve Rubik’s cube.
Proc of the National Conference on Artificial Intelligence 164-167.

Newell, A. 1969. Heuristic programming: Ill-structured problems.
In J. S. Aronofsky (Ed.) Progress in operations research. (Vol.
IJI). New York: John Wiley and Sons, 361-414.

Nilsson, N.J. 1971. Problem-solving methods in artificial intel-
ligence. New York: McGraw-Hill.

Shortliffe, E.H. 1976. Computer-based medical consultations:
MYCIN, New York: North-Holland.

Simon, H.A. 1973. The structure of ill structured problems.
Artificial Intelligence 4:181-202.

Enter The New

AGE-
ROBOTICS

An age where formerly impossible tasks become
everyday reality The mechanization of many
laborious physical and intellectual tasks of in-
dustrial, commercial and domestic life is coming
about through the technology of intelligent
machines We see innovative applications of
microprocessors, simulations, sensor electronics,
real time control, effector design, machine design,
aerospace robots and autonomous systems

Thii is the world of Robotics Age, the Journal of
Intelligent Machines Make this world yours In
Robotics Age you’ll find topics from the realities of
industrial automation to the prospect of personal
robotics Integrating it all is modern software
engineering As illustrations, we show how you
can perform practical design explorations with in-
expensive personal computers

Recently published titles include: Avatar, A
Homebuilt Robot; The Physics of One-Legged
Mobile Robots: Constructing an Intelligent Mobile
Platform: An Inexpensive Hand: Natural Language
Understanding: Applying Robot Vision To the Real
World; Telecommunications Robots In every issue
you’ll find features like Patent Probe, New Pro-
ducts, Letters and Design Forums

Don’t miss out Subscribe today With your paid
subscription accompanied by the coupon below,
we’ll send you a free reprint of the article Avatar:

, A Homebuilt Robot
. If you’re not completely

satisfied with your
subscription to Robotics
Age, we’ll refund your

meet AVATAR: A Homebuilt Robot
I----------
Sign me up for a 6 ISSW trial subsmption
[] Send an ISSUE and bill me $15 OOfor 6 r all
[] Enclosed IS $15 00(6 issues plus Avatar

reprmt)

Name

Address

state ZIP
Charge MI [j Master Card [j “is.3

Number EXplWS

Robotics Age Magazine
P 0 Box 358 -Peterborough NH-03458
(603) 924-7136

THE AI MAGAZINE Summer 1983 29

