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Abstract 

Among the difficulties in evaluating AI-type medical diagnosis systems 
are: the intermediate conclusions of the AI system need to be looked 
at in addition to the “final” answer; the “superhuman human” fallacy 
must be resisted; both pro- and anti-computer biases during evaluation 
must be guarded against; and methods for estimating how the approach 
will scale upwards to larger domains are needed We propose a type 
of Turing test for the evaluation problem, designed to provide some 
protection against the problems listed above We propose to measure 
both the accuracy of diagnosis and the structure of reasoning, the latter 
with a view to gauging how well the system will scale up 

TESTINGSYSTEMS WITHMULTIPLEDIMENSIONS toper- 
formance and possibly designed to meet multiple objec- 
tives, especially involving many subjective components, is 
inherently fraught with pitfalls. Evaluation of AI systems 
for medical decision-making (AIM systems) is no exception. 
The problem of evaluation of such systems is very important, 
however, since these sophisticated approaches should even- 
tually result in systems with real benefits in clinical practice. 
Their widespread introduction is not possible until reliable 
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measures of the cost/benefit ratios of their use are available. 
A staple of many of the evaluations of AI systems that 

have so far been conducted (Colby, Hilf, Weber, 81 Kraemer, 
1972; Yu et al, 1979) is a central idea from a well-known 
proposal to evaluate AI systems: The Turing Test (Turing, 
1963) The meat of the idea is to see if a neutral observer, 
given a set of performances on a task, some by a machine 
and others by humans, but unlabelled as to authorship, could 
identify, better than chance, which were machine and which 
were human-produced. Note that this really attempts to 
answer the question, “DO we know how to design a machine 
to perform a task which until now required human intel- 
ligence?“, but not the question, “Is the cost of introduction 
of a given machine for a task acceptable in comparison to 
the benefits?” The latter question subsumes the former in 
a sense: because the machine not performing well in com- 
parison to a human would presumably increase the cost 
significantly. 

In this paper I follow tradition and consider the evalua- 
tion of AI systems for medical diagnosis from the viewpoint 
of the first question above. In particular, I would like to 
outline some of the difficulties inherent in the evaluation of 
AIM systems, and to offer an evaluation procedure to be con- 
sidered as a proposal and discussed by the community of NM 
researchers. 

The proposed procedure is also a variant of Turing’s 
Test. I am aware that the procedure does not fully avoid all 
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the difficulties that I will be outlining, but it does respond to 
most of them. It is expensive in terms of physician time that 
is needed, but again, attempts have been made to reduce this 
component. 

The problem of evaluation of performance is not unique 
to AIM systems of course; in fact, within AI, the issue is 
currently of considerable relevance to the broader area of 
expert systems. The discussion in (Gaschnig, et al., 1983) 
on evaluation of expert systems has many points of contact 
with what we say in the next section. Information about 
the evaluation status of some of the better-known expert 
systems is given in (Duda, Shortliffe, 1983). While the AIM 
system evaluation problem shares many aspects with the 
more general expert system evaluation problem, the proposal 
in this article is meant in particular for AIM systems. 

Problems in Evaluation of Medical Diagnosis Sys- 
tems 

Success/Failure Dichotomy Insufficient. When 
evaluating performance of complex systems, especially at a 
development stage, simple “success” vs. “failure” evaluations 
based on the final answer may be insufficient because they do 
not take into account the possibility of very acceptable inter- 
mediate performance. In order to avoid this, a sophisticated 
evaluation technique needs to be developed for comparing 
complex symbol structures representing the important steps 
in reasoning. Such a technique is particularly needed if the 
objective is to evaluate the promise of an approach, rather 
than the performance of a deliverable system. As pointed 
out by Yu et al (1979), “A complex reasoning program must 
be judged by the accuracy of its intermediate conclusion as 
well as its final decision.” 

Superhuman Human Fallacy. When performance of 
computer-based consultation or diagnosis systems is evaluated 
against an absolute standard of correctness, such as confirmed 
autopsy findings, the ability of the computer system to agree 
with clinical judgments may be underestimated A compara- 
tive evaluation involving the computer system performance 
and that of a group of clinicians may be more revealing of 
the real ability of the system. 

Anti- or Pro-computer Bias. The evaluators of com- 
puter performance may be biased either in favor or against 
the computer. A “blind” procedure in which the evaluating 
clinician is given both the computer performance and that 
of other clinicians, coded in such a way that it is not pos- 
sible to guess the identity, would eliminate this danger. But 
this coding itself may introduce biases or errors, and careful 
procedures for this coding need to be developed. 

“Correct” Answer May Be Unknown. Often, there 
are no “correct” answers, since expert clinicians may disagree 
among themselves. Techniques by which the computer is 
given exactly as much benefit of the doubt as the human 
experts during disagreement are necessary. 

Scaling Upwards. Ability to scale upward to larger 
domains of medicine may not be evident from many evalua- 

tions. For instance, a program dealing with a relatively small 
knowledge-base may be based on an approach that is not 
easily extensible, but may still be tuned to yield great ac- 
curacy in performance over its small space of possibilities. 
Evaluations over a sequence of knowledge-bases, each a su- 
perset of its predecessor, can yield information about ease of 
expansion and consistency of performance across knowledge- 
bases. However, a careful examination of the structure of 
intermediate reasoning in the small domain may still yield 
clues about ease of expansion. 

Small Sample Size Problems. Performance of the 
system in “rare” diseases or unusual situations cannot often 
be reliably evaluated due to the generally small sample size 
of the available cases involving these situations. 

Matching Distribution of Clinical Practice. With- 
out some knowledge about the distribution of types of cases 
that a system will need to confront, the results of evalua- 
tion cannot be suitably interpreted. For instance, suppose 
the computer system is very efficient in solving most of 
the “common” occurrences of diseases in an area of clinical 
medicine, and relatively poor in solving rare or “difficult” 
cases. If the difficult cases were to be chosen because they are 
“interesting” as test cases, the statistical evaluation of the 
system might not represent its performance in a real clinical 
setting. A solution to this situation is to require that cases 
be selected as representative of the target clinical setting. 
Where “interesting” cases are chosen for other reasons, the 
statistical evaluation will need to be suitably reinterpreted. 

Objectives of Testing and Evaluation 

Some of the purposes of testing and evaluation are: 
Guaranteeing satisfactory performance to somebody 
outside the development group-the user, the spon- 
sor of the development effort, etc 
Locating weaknesses in the system so further de- 
velopment can be made, e.g., to see whether the 
knowledge-base is adequately rich, whether problem 
solving is sufficiently powerful, etc As soon as errors 
are detected, further theoretical or system develop- 
ment will be called for. 
Evaluating different functions of the same system 
For instance, a complex medical consultation system 
may be evaluated as a diagnostician, as an explana- 
tion facility, as an intelligent fact-retrieval facility, 
etc 
Evaluating different dimensions of the same function, 
e g., correctness of diagnosis, habitability of the sys- 
tem in the diagnostic mode, response time, etc., are 
different dimensions of the diagnostic function 

Experience in Evaluation of Other AI Medical Sys- 
tems 

Several AIM systems have been subjected to evaluation 
procedures of varying degrees of rigor and completeness. An 
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evaluation of MYCIN is reported in (Yu, et al., 1979), and 
(Miller, et al., 1982) describe an evaluation of INTERNIST-l. 
CASNET, a consultation program for glaucoma, has been 
evaluated in a formal way (Kulikowski, Weiss, 1982), as 
have the DIGITALIS ADVISOR program (Long, 1980) and 
PUFF, a program for interpretation of pulmonary function 
tests (Aikins et al., in press). MDX, a program developed in 
our research group, has undergone a preliminary evaluation 
(Tatman, Smith, 1982) Most of the above evaluations used 
randomized trials, case studies or a combination thereof. 

In addition to these programs, diagnostic ECG programs 
that were developed in the 1960’s have been the subjects 
of intense evaluation (Computers in Cardiology, 1976). Ex- 
perience in evaluating ECG programs is of mixed relevance 
to the complex consultation programs of the type we are 
discussing. The separation of designer-clinical experts from 
the evaluating clinical experts, and coding to avoid bias as- 
sociated with knowing the identity are two examples of use- 
ful ideas that are applicable to our current purpose. On 
the other hand, because of the limited knowledge-base, and 
the more statistical/numerical nature of the computations 
in ECG programs, the difficulties associated with evaluating 
symbolic processes are not present in their evaluation. Our 
own proposed evaluation experiences of MYCIN and CASNET 
designers, but go beyond them in some crucial aspects. 

PROPOSED EVALUATION PROCEDURE 

Focus of Evaluation. Our major focus in the evalua- 
tion procedure will be on the diagnostic performance of an AI 
system. The two major components that will be considered 
are: 

a. the accuracy of diagnosis, and 

b. the structure of reasoning. 

In b, we shall attempt to evaluate the efficiency with which 
conclusions are reached, i.e., examine whether many ir- 
relevant hypotheses are pursued, or focused, purposeful 
reasoning is displayed. The importance of testing for this 
component is to give evidence for how the approach will 
scale upward to larger domains (see Scaling Upwards). In a 
relatively small knowledge-base, blind or unintelligent search 
may result in the correct answer, but that approach will not 
work in larger domains. Examining the structure of analysis 
even in the small domain will give information about the 
“intelligence” of problem solving displayed by the system. 

Steps in Evaluation. The proposed evaluation proce- 
dure consists of the following steps. 

Sl. In order to avoid constant tinkering with the sys- 
tem after each failure, versions of the system will be 
fixed The initial versions may be abandoned after 
a series of failures, but later ones will be stabilized, 
and used continuously for evaluation. 

S2. A group of experts in the relevant clinical domain 
will be assembled. These will be experts who have 
not participated in the development of the system in 

any manner. This group will be subdivided into two 
groups, Gl and G2. Gl is a small group of experts 
who will generate the cases (step S4), and play the 
neutral role of coding the responses to suppress the 
identities of the diagnosticians (Steps S6 and S7) 
Experts in G2 will both generate their own diagnoses, 
and grade human vs machine performance (Step 
S8) 

S3. A clear specification of the scope of the system 
will be written. While our earlier attempts at 
specification will most likely be inadequate, after a 
few iterations we should have a reasonably precise 
specification of what kinds of diseases and data the 
system is meant to deal with This specification 
will be the basis for deciding whether a failure of 
the system should be included in the tabulations If 
the case description and the actual diagnosis fit the 
specification, then the failure is a mark against that 
version of the diagnostic system If, on the other 
hand, the specification establishes that the case does 
not fit it, then the failure is not recorded W7ithout 
such a clear specification, there will always be a 
temptation to explain away failures. 

S4 Experts from Gl will be asked to compile two 
sets of cases: one set, a random selection of cases 
from their practice satisfying the specification; the 
second, a smaller set of “interesting” cases, either 
from journals or their own practice, t,o probe pos- 
sible weaknesses in the knowledge-base or problem 
solving. The improvement for the next version 

S5 These cases, as far as possible, will be complete 
cases, i e , in addition to all the clinical data (lab, 
symptoms, etc ), confirmed diagnoses (autopsy, mor- 
phological confirmations, etc ) will also be avail- 
able Partial information cases may be included dur- 
ing the later phases of the evaluation, if time per- 
mits The confirmed diagnoses will be used during 
the “grading” phase for comparative evaluation of 
human diagnosticians and the machine. (See our ear- 
lier remarks regarding the superhuman human fal- 
lacy. To circumvent the pitfall discussed in that 
paragraph, the confirmed diagnosis is the yardstick 
against which both the human and the machine will 
be compared). 

S6 Each of the case descriptions, excluding, of course, 
the confirmed diagnoses portion, will be distributed 
to one of the experts in group G2 For purposes of dis- 
cussion, let us say case Ci is given to expert Ej from 
G2 For each case, the expert’s “thinking-aloud” 
protocol will be recorded. These protocols will be 
used by experts in Gl (preferably working together as 
subgroups to reduce the subjectivity of the process) 
to produce two performance data structures: oi and 
,&. cy( displays, for case Ci, the final diagnosis and 
supporting positive and negative evidence as given 
by expert Ej. ,&, on the other hand, is a repre- 
sentation of E3's diagnostic activity coded as a se- 
quence of disease hypotheses considered, along with 
the data used by Ej for accepting or rejecting inter- 
mediate hypotheses. pi will be a tree-like structure 
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representing the space over which the search ranged 
during problem solving 

S7. The same case will then be run on the system 
From the output. of t.he system, experts in Gl will 
again produce the two data structures mentioned in 
S6: c~zf, pf Here the asterisks are a notational device 
to refer to the AI system; the contents of the data 
structures themselves do not have any information 
regarding this identity. 

S8 For each case, we now have performance data struc- 
tures from an expert and the machine, but coded 
so as to suppress the identities. This is now dis- 
tributed to the other experts, along with the original 
case description including the information about 
confirmed diagnoses. More precisely, if case Ci had 
gone to expert Ej in stage S6, all experts in G2 except 
E3 will receive the case and the performance data 
structures for this case. (They will not be told which 
data structures represent human performance, which 
the machine’s, and they will not know which expert 
Ej was assigned to that case. In fact, there is even 
no need for them to know that one of the structures 
represents the human’s and the other the machine’s 
performance ) 

The “grading” procedure will be in two substages. 
The experts will first be given only the data strub- 
tures LYE and &, which represent final diagnoses 
Each expert will be asked to grade the performance 
(on some suitable normalized scale). They will be 
asked to give partial credit for partial solution (e.g., 
deciding extra- vs. intra-hepatic cholestasis will be 
given partial credit, even if the particular cause of 
cholestasis! say, stone, has not been pinpointed). In 
the second substage, they will be given the data 
structures ,!?; and /31, which stand for the reasoning 
efficiencies Grading similar to the first substage will 
be requested. 

The reason for comparing o’s first is that the ac- 
curacy of diagnosis should be judged unbiased by the 
perceived search efficiencies indicated in the /3’s If 
the size of G2 is n2, we will have for each case, (n2 - 
1) comparative evaluations of machine vs. human 
expert performance for two components of perfor- 
mance: diagnostic accuracy and search efficiency. 

S9. Tables can now be prepared which display machine 
vs. human performance as average scores for sets of 
cases. 

In the above procedure, there are several details that can 
only be decided upon during the conduct of the evaluation, 
since they depend upon the availability of sufficient numbers 
of experts to take part in the study In particular: 

1 The size of group Gl need not be large: one might be 
sufficient, but we would prefer at least two Because 
of the subjectivity of the phase of translation into 
data structures, it would be useful if they can work 
together 

2 The role played by experts in Gl can go either 
way. That is, instead of coding human and machine 

performance into machine-like data structures, they 
might instead translate the machine output into a 
coherent natural language narrative. The effects on 
the evaluation would remain the same, since the 
evaluators are still blind with respect to the identity 
of the diagnostician. 

3. The number of evaluation experts in G2 and t,he num- 
ber of test cases can be adjusted to produce a total 
number of evaluations sufficient for significant con- 
clusions to be drawn. 

Finally, a few remarks on the subjective aspects of the 
evaluation would be useful. Subjectivity is localized in two 
processes: the role played by experts in Gl in coding the 
human and machine response into structures Q and p; and 
the comparative evaluation of these structures by experts in 
G2. The latter subjective process is, in our view, a strength 
of the procedure; as long as identities are suppressed, peer 
judgements are one of the best means of evaluation. The 
subjectivity implicit in the role of Gl is unavoidable, until 
AI systems with smooth natural language performance and 
general world knowledge are produced. Until then, there 
will always be extra medical competence components in nar- 
ratives and protocols to give away the human vs. machine 
identities. However, more complex variants are possible in or- 
der to distribute the role played by members of Gl as “man- 
machine identity suppressors ” Experts in G2 can rotate this 
role with those in Gl, producing a more randomized design 
with respect to bias in the production of t’ranslations. Such 
variations will mute the subjectivity of this phase, and thus 
will be responsive to concern expressed for bias. 
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CMSL programmer, all data appears a graph of named ver- 
tices connected by edges. In reality, the graph is represented 
as structures of connection machine cells. Some CMSL opera- 
tions correspond almost daily to a single connection machine 
instruction. Others involve complex patterns of messages 
passed between cells. 

Another approach to creating parallel systems is that of 
Professor Carl E. Hewitt and his associates. They have devel- 
oped actor theory, a rigorous abstract theory of parallel sys- 
tems, that may provide a foundation for the construction and 
analysis of highly parallel problem-solving systems. Several 
important components have been developed including the 
Act 1 subsystem to model specialized communicating agents: 
the Omega subsystem for parallel semantic taxonomic rela- 
tional networks, implemented by Dr. Gerald R. Barber 
and Mr. Eugene Ciccarelli, and the Sprites subsystem to 
model the communications activities involved in processing 
general goals and assertions, implemented by Dr. William 
A. Kornfeld. 

Working with Professor Hewitt, Mr. Henry Lieberman 
has completed a preliminary version of the Tinker System 
for concrete programming Tinker enables a user at a work 
station to develop general procedures by abstracting from 
specific instances of steps performed on concrete examples 
at the work station. Mr. Lieberman and Professor Hewitt 
also have developed a real-time garbage collection algorithm 
based on the life time of objects. 

Finally, Professor Sussman and his associates have com- 
pleted the design of the SCHEME-81 chip, a VLSI device for 
running SCHEME, a dialect of the LISP programming lan- 
guage. In addition to testing the limits of our automated 
design aides, the SCHEME-81 chip may be a step toward bet- 
ter LISP-oriented personal computers: preliminary estimates 
are that SCHEME-81 will interpret simple LISP prorams 
about five times faster than our best current hardware. For 
large, complex programs, it will do even better. 

A special-purpose silicon compiler, by Mr. Philip E. 
Agre, has been important to the development of SCHEME- 
81. Given a small program definition, Mr. Agre’s compiler 
produces code specifying the layout of a SCHEME-81 bus- 
compatible chip to implement that function. The compiler 
uses traditional techniques and some novel heuristic methods 
to reason about the tradeoffs involved in writing highly paral- 
lel microcode. 

Also, Mr. Jonathan D. Taft has been working on build- 
ing a small SCHEME computer for testing our chips. It uses 
a Motorola 68000 design module as a front-end processor 
for performing I/O, for user-level arithmetic, for character 
manipulation, and for console control and debugging of the 
SCHEME system 

The Computing Environment 

The Laboratory’s computing resources were improved by 
the installation of a large 20/60 system, a VAX 11/780, and 
a VAX 11/750, all manufactured by the Digital Equipment 
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Corporation. The machines complement a variety of exist- 
ing machines, including nearly two dozen LISP Machines, de- 
signed and built by the MIT Artificial Intelligence Laboratory. 

All of the machines, together with terminal concentrators, 
are linked together with an eight-megabit packet-oriented 
cable system known as the CHAOSNET. The cable system 
can support as many as 100 communicating computers before 
reaching intolerable performance deterioration. 
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