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Abstract 

Cooperative distributed problem solving networks are dist,libuted net- 
works of semi-autonomous processing nodes t,hat work t,ogether t,o solve 
a smgle problem The Distrihut,ed Vehicle Monitoring Testbed is a 
flcxihle and fully-inst,rllmeni.ed research tool for empirically evaluating 
altclnative designs fol these net.works The t.estbed simulates a class 
of a distributed knowledge-based problem solving systems operating on 
an abstracted version of a vehicle monitoring task 
There are two important, aspects Lo the testbed: (1 ) it implements 
a novel generic architecture for distributed problem solving net,works 
that exploits Lhc use of sophisticated local node control aud meta-level 
control Lo improve global coherence in network problem solving; (2 ) it 
serves as an example of how a testbed can be engineered to permit the 
empirical exp101 ation of design issues in knowledge-based AT systems. 
The testbed is capable of simulating differen degrees of sophistica- 
tion iu problem solving knowledge and different. focus-of-attent,ion 
mechanisms, for varying the distribut,ion and characteristics of error in 
its (simulat,ed) input data, and for measuring the progress of problem 
solving. Node configurations and communication channel charact,eris- 
tics can also he independent,ly varied in the simulated network 

THERE ARE TWO MAJOR T~IEMES of this article. 
First, WC introduce readers to the emerging subdiscipline of 
AI called Dzstrrbuted Problem Solving, and more specifically 
the authors’ research on Functionally Accurate, Cooperative 
systems Second, we discuss the st,ructure of tools that al- 
low more thorough experimentation than has typically been 
performed in AI research An examplr of such a tool, the 
Distributed Vehicle Monitoring Testbed, will bc presented. 
The testbed simulates a class of dist,ributed knowledge-based 
problem solving systems operating on an abstracted version 
of a vehicle monitoring task. This presentation emphasizes 
how the t,estbed is structured to facilit,ate the study of a wide 
range of issues faced in t,he design of distributed problem 
solving networks. 

Characteristics of Distributed Problem Solving. 

A project as large and complex as the Distributed Vehicle Monitor- 
ing Testbed involved a number of individuals and became itself a dis- 
tributed problem solving task The efforts of Richard Brooks, Eva 
Hudlicka, Larry Lefkowitz, Raam Mukunda, .Jasmina Pavlin, and Scott 
Reed contributed to the success of the testbcd We would also like to 
acknowledge Lee &man’s collaboration on the initial formulation of the 
Functionally Accmate, Cooperative approach and his work on the pilot 
experiments This research was sponsored, in part, by the National 
Science Foundation under Grant MC%8006327 and by t,he Defense Ad- 
vanced Rcscarch Pr0ject.s Agency (1)01>), monitored by the Office of 

Naval Kcsearch under Contract NR049-041 

Distribut,ed Problem Solving (also called Distributed 
Al) combines the research interests of the fields of AI and 
Distributed Processing (Chandrasekaran 1981; Davis 1980, 
1982; Fehling & Erman 1983). We broadly define dis- 
tributed problem solving networks as distributed networks 
of semi-autonomous problem solving nodes (processing ele- 
merits) that are capable of sophisticated problem solving and 
cooperatively int,eract with ot,her nodes to solve a szngle prob- 
lcm. Each node can itself be a sophisticated problem solvzng 
system that, can modify its behavior as circumstances change 
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and plan its own commimication and cooperation strat)egics 
with other nodes. 

Distributed problem solving is an important, research 
area for several reasons First, hardware technology has 
advanced to the point where the construction of large dis- 
tributed problem solving networks is not only possible, but 
economically feasihlc. While the first networks may consist 
of only a small number of nodes, distributed prohlcm solv- 
ing networks may eventually contain hundreds or t,housands 
of individual nodes. We arc nearing a situation of excit- 
ing hardware possibilities unaccompanied by the problem 
solving technology required for their effective utilization. 
Second, there arc AI applicat,ions that are inherently spa- 
tially distributed A distributed architecture t,hat matches 
their spatial distribution offers many advantages over a 
centralized approach. Third, understanding the process of 
cooperative problem solving is an important, goal in its own 
right,. Whether the underlying system is societal, managerial, 
biological, or mechanical, we seem to understand compeid- 
Con far better tharl coopcrat,ion It, is possible that the devel- 
opment of dist,rihuted problem solving networks may serve 
the same validating role to theories in sociology, manage- 
ment, organizational theory, and biology as the development 
of AI systems have served to theories of problem solving and 

inl,elligcnce in psychology and philosophy. 
Although this new area borrows ideas from both AI and 

Distributed Processing, it difl’ers significantly from each in 
the problems being attacked and the methods used to solve 
these problems 

Distributed Problem Solving 
and Distributed Processing 

Distributed problem solving networks dilfcr from dis- 
tributed processing systems in both the style of distribution 
and the t,ype of problems addressed (Smith & Davis 1981). 
These differences are most apparent, when we study the inter- 
actions among nodes in each of the types of networks A dis- 
tributed processing network typically has multiple, disparate 
t,asks executing concurrently in the network. Shared access 
to physical or informational resources is the main reason for 
int,eraction among tasks The goal is to preserve the illusion 
t,hat each task is executing alone on a dedicated syst,cm by 
having the network operat,ing system hide the resource shar- 
ing interactions and conflicts among tasks in the network. In 
contrast, the problem solving procedures in distrihuted prob- 
lem solving networks are explicitly aware of the distribution 
of the network components and can make informed inter- 
action decisions based on that information. This difference 
in emphasis is, in part, due to the characteristics of the ap- 
plications being tackled by conventional distributed process- 
ing methodologies These applications have permitted task 
decompositions in which a node rarely needs the assistance 
of another node in carrying out its prohlcm solving func- 
tion. Thus, most of the research as well as the paradigms of 
distributed processing do not directly address the issues of 

cooperative interactions of tasks to solve a single problem. 
hs will be discussed later, highly cooperative task intcrac- 
tion is a requirement for many problems that seem naturally 
suited to a distributed network. 

Distributed Problem Solving 
and Artificial Intelligence 

Distributed problem solving also difl’ers from much of 
the work in AI because of its emphasis on representing prob- 
lem solving in terms of asynchronous, loosely-coupled process 
networks that operate in parallel with limited int,erprocess 
communication Networks of cooperating nodes are not new 
t,o artificial intelligence. However, the relative autonomy and 
sophistication of the problem solving nodes, a direct consc- 
quence of limited communication, sets distributed problem 
solving networks apart from most others, including Hewitt’s 
work on the actor formalism, Kornfeld’s ETHER language, 
Lenat’s RISINGS system, and the augmented Petri nets of Zis- 
man (Hewitt 1977, Kornfeld 1979, Lenat 1975, Zisman 1978) 
The requirement, for limited communication in a distributed 
network has also led to the development of problem solving 
archil,ectures that can operate with possibly inconsistent and 
incomplete data and control information. In many applica- 
tions, communication delay makes it impractical for the net- 
work to be structured so that each node has all the relevant 
information needed for its local computations and control 
decisions. Another way of viewing t,his problem is that the 
spatial decomposition of information among the nodes is ill- 
suitcd to a functionally distributed solution Each node may 
possess the information necessary to perform a portion of 
each function, but insuficcnt information to completely per- 
form any function. 

The Uses of Distributed Problem Solving. 

Most, initial work in distributed problem solving has 
focused on three distributed air traffic control, and dis- 
tributed robot systems (Davis 1980, 1982; Fehling 1983). All 
of these applications need to accomplish distributed inter- 
pretation (situation assessment) and distributed planning. 
Planning here refers not only to planning what actions to 
take (such as changing the course of an airplane), but, also 
to planning how t,o use resources of t,he network to carry out, 
t,he int,erpretation and planning t,ask effectively This latttr 
form of planning encompasses the classic focus-of-atttntion 
problem in AI 

In addition to the commonality in terms of the generic 
tasks being solved, t,hese application domains arc charac- 
terized by a natural spatial distribution of sensors and 
effecters, and by t,he fact that the subproblems of bot,h the lo- 
cal interpretation of sensory data and the planning of effecl,or 
actions are interdependent, in time and space For example, 
in a distrihuted sensor network tracking vehicle movements, 
a vehicle detected in one part of the sensed area implies t,hat a 
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vehicle of similar type and velocity will be sensed a short time 
lat)er in an adjacent area (Figure 1). J,ikewise, a plan for guid- 
ing an airplane must be coordinated with the plans of other 
nearby airplanes in order to avoid collision. Interdependency 
also arises from redundancy in sensory data Often different 
nodes sense the same event due to overlaps in the range of 
sensors and the use of different types of sensors that sense 
the same event in different ways. Exploiting these redundant 
and alternative views and the interdepcndencies among sub- 
problems require nodes to cooperate in order to interpret and 
plan elrectively. This cooperation leads to viewing network 
problem solving in terms of a single problem rather than a 
set of independent subproblems. 

It is difficult to develop a distributed problem solving 
architecture that can exploit the characteristics of these ap- 
plications to limit internode communication, to achieve real- 
time response, and to provide high reliability. Nodes must 
coopcrat,c to exploit and coordinate their answers to inter- 
dependent subproblems, but must do so with limited inter- 
processor communication. This requires the development 
of new paradigms that permit the distribut,ed system to 
deal effectively with environmental uncertainty (not having 
an accurate view of the number and location of processors, 
efl”ectors, sensors, and communication channels), data uncer- 
tainty (not having complete and consistent local data at a 
node) and control uncertaint,y (not having a complet,ely ac- 
curate model of activities in other nodes). 

We see the development of these paradigms as draw- 
ing heavily on the work in knowledge-based AI systems and, 
simultaneously, making contributions to AI. As Nilsson has 
noted, the challenges posed by distributed Artificial Intel- 
ligence will contribute to (and may even be a prerequisite for) 
progress in “ordinary” artificial intelligence ( Nilsson, 1980) 
One example of this interaction is the problem of controlling 
semi-autonomous problem solving agents possessing only a 
local and possibly errorful view of the global state of problem 
solving. Solutions being developed for t,his problem have in- 
volved the use of meta-level control, integrated data-directed 
and goal-directed control, and focus-of-attention strategies 
based on reasoning about, the &ate of local problem solving 
((:orkill 1983). App roaches similar to these arc being used to 
solve the control problems that are faced in the development 
of a new generation of centralized knowledge-based problem 
solving systems, which have significantly larger and more 
diverse knowledge bases 

In the remainder of this article we first describe the Func- 
tionally Accurate, Cooperative distributed problem solving 
paradigm and pilot experiments that explored the viability of 
this approach After describing the issues we wish to explore 
using the Distributed Vehicle Monit,oring T&bed, we present, 
the vehicle monitoring task, followed by a deta.iled discus- 
sion of the tentbed. Later sections describe how we have 
quantified system behavior and the use of these measures for 
simulating and evaluating the performance of various sys- 
t,em components, overview the tools that help a user define 
experiments and analyze their output, review the current, 

status of the testbed implement,ation, and outline future re- 
search directions. 

Functionally Accurate, Cooperative 
Distributed Problem Solving 

Our research has focused on the design of distributed 
problem solving networks for applications in which there is 
a natural spatial distribution of information and processing 
requirements, but insufficient information for each proccss- 
ing node to make completely accurate control and processing 
decisions without extensive internode communication (used 
to acquire missing information and to determine appropriate 
node activity). An example of this type of a.pplication is dis- 
tributed vehicle monitoring. Vehicle monitoring is the task 
of generating a dynamic, area-wide map of vehicles moving 
through the monitored area. Distributed vehicle monitoring 
typically has a number of processing nodes, with associated 
acoustic sensors (of limited range and accuracy), gcographi- 
tally distributed over the area to be monitored (Lacoss 
1978, Smith 1978). Each processsing node can communicate 

Figure 1 

Tracking Vehicle Movements in a Distributed Sensor Nei,work 
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with other nearby nodes over a packet radio communica- 
tion network (Kahn 1978). Each sensor includes the actual 
acoustic transducer, low-level signal processing hardware and 
software, and communication equipment necessary to trans- 
mit the processed signals to a high-level (symbolic) processing 
site. 

As a vehicle moves through the monitoring area, it 
generates characteristic acoustic signals. Some of these sig- 
nals are recognized by nearby sensors which detect the fre- 
quency and approximate location of the source of the signals. 
An acoustic sensor has a limited range and accuracy, and 
the raw data it generates contains significant error. Using 
data from only one sensor can result in “identification” of 
non-existent vehicles and ghosts, missed detection of actual 
vehicles, and incorrect location and identification of actual 
vehicles. To reduce these errors, information from various 
sensors must be correlated over time to produce the answer 
map. The amount of communication required to redistribute 
the raw sensory data necessary for correct localized process- 
ing makes such an approach infeasible. 

One way to reduce the amount of communication and 
synchronization is to loosen the requirement that nodes al- 
ways produce complete and accurate results. Instead, each 
node produces tentative results which may be incomplete, 
incorrect, or inconsistent with the tentative partial results 
produced by other nodes. For example, a node may produce a 
set of alternative partial hypotheses based on reasonable ex- 
pectations of what the missing data might be. 111 the vehicle 
monitoring task, each node’s tentative vehicle identification 
hypotheses can be used to indicate to other nodes the areas 
in which vehicles are more likely to be found and the 
details (vehicle type, rough location, speed, etc.) of probable 
vehicles. This information help a node to identify the actual 
signals in its noisy sensory data. In addition, consistencies 
between t,hese tentat,ive identification hypotheses serve to 
reinforce confidence in each node’s identifications. Such 
cooperation is not only appropriate for vehicle identifica.tion, 
but also potentially useful in other stages of processing 
(identification of raw signals, groups of harmonically related 
signals, patterns of vehicles, etc.). 

This type of node processing requires a distributed prob- 
lem solving structure in which the nodes cooperatively con- 
verge to acceptable answers in the face of incorrect, inac- 
curate, and inconsistent intermediate results. This is ac- 
complished using an iterative, coroutine type of node in- 
teraction in which nodes’ tentative partial results are itera- 
tively revised and extended through interaction with other 
nodes. A network with this problem solving structure is 
called Functionally Accurate, Cooperatzve @A/C) (Lesser 
1981). “Functionally accurate” refers to the generation of 
acceptably accurate solutions without the requirement that 
all shared intermediate results be correct and consistent 
(as is the case with conventional distributed processing). 
“Cooperative” refers to the iterative, coroutine style of node 
interaction in the network. The hope of this approach is 
that much less communication is required to exchange these 

high-level, tentative results than the communication of raw 
data and processing results that would be required using 
a conventional distributed processing approach. In addi- 
tion, synchronization among nodes can also be reduced or 
eliminated entirely, resulting in increased node parallelism. 
Finally, this approach leads to a more robust network since 
errors resulting from hardware failure are potentially cor- 
rectable in the same fashion as errors resulting from the use 
of incomplete and inconsistent local information. 

A Pilot Experiment in Distributed Interpretation 

A set of pilot experiments was performed to investigate 
the suitability of the FA/C approach using a network of com- 
plete HEARSAY-II interpretation systems (Lesser 1980). The 
HEARSAY-II architecture appeared to be a good structure 
for each node because it incorporates mechanisms for deal- 
ing with uncertainty and error as an integral part of its basic 
problem solving. Further, the processing can be partitioned 
or replicated naturally among network nodes because it is al- 
ready decomposd into independent and self-directed modules 
called, knowledge sources, which interact anonymously and 
are limited in the scope of the data they need and product. 
For further informat,ion about the HEARSAY-II architecture 
see Erman, et al (1980). 

Experiments were performed to determine how the prob- 
lem solving behavior of a network of HEARSAY-II nodes com- 
pared to a centralized system. Each node was completely 
self-directed in its decisions about, what work it, should per- 
form and what information it should transmit to other nodes. 
The aspects of behavior studied included the accuracy of the 
interpretation, the time required, the amount of internode 
communication, and network robustness in the face of com- 
munication errors. These experiments simulated only the dis- 
tributed hardware ~ they used an actual HEARSAY-II speech 
understanding syst,em analyzing real data. A spatial dis- 
tribution of sensory data was modelled by having each node 
of the distributed speech understanding network sample one 
part (time-contiguous segment) of the overall speech signal. 

The experiments showed that a network of three HEAR- 
SAY-II speech understanding nodes performs well as a coopera- 
tive distributed network even though each node has a limited 
view of the input data and exchanges only high-level (phrasal) 
partial results with other nodes. In an experiment with er- 
rorful communication, network performance degraded grace- 
fully with as much as 50% of the messages lost, indicating 
that the system can often compensate automatically for the 
lost messages by performing additional computation. 

Although these experiments were extremely positive, 
they did point up a key issue in the successful application 
of the FA/C approach. This issue, which we feel is also 
important for the design of any complex distributed prob- 
lem solving network, is that of obtaining a sufficient, level of 
cooperation and coherence among the activities of the semi- 
autonomous, problem solving nodes in the network (Davis & 
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Smith 1982, Corkill 1982). If this coherence is not achieved, 
then t,he performance (speed and accuracy) of the network 
can be significantly diminished as a result of lost processing 
as nodes work at cross-purposes with one another, redun- 
dantly applied processing as nodes duplicate efforts, and 
misallocation of activities so that important portions of the 
problem are either inaccurately solved or not solved in timely 
fashion. 

In the pilot experiments with the three-node network, 
we observed that the simple data-dzrected and self-directed 

control regime used in these experiments can lead to non- 
coherent behavior (Lesser 1980). Situations occurred when 
a node had obtained a good solution in its area of interest 
and, having no way to redirect its attention to new problems, 
simply produced alternative but worse solutions. Another 
problem occurred when a node had noisy data and could not 
possibly find an accurate solution without help from other 
nodes. In this situation, the node with noisy data often 
quickly generated an inaccurate solution which, when trans- 
mitted to the nodes working on better data, resulted in the 
distraction of these nodes. This distracting information in 
turn caused significant delay in the generation of accurate 
solutions by nodes with accurate as well as noisy data. We 
believe that development of appropriate network coordina- 
tion policies (the lack of which resulted in diminished net- 
work performance for even a small network) will be crucial to 
the effective construction of large distributed problem solving 
networks containing tens to hundreds of processing nodes. 

The Need for a Testbed 

Although these experiments provided intitial empirical 
validation for the FA/C approach and pointed out an impor- 
tant set, of issues that needed to be solved, they were just a 
first step. These experiments were not based on a realistic 
distributed task, and more importantly were limited in the 
scope of issues that could be addressed. Thus, a more ex- 
tensive set of empirical investigations was necessary in order 
to better understand the utility and limitations of the FA/C 
approach Empirical performance measures were needed for 
a wide range of task and problem solving situations in order 
to evaluate and analyze the following issues: 

l Self-correcting computational structures. What and how 
much uncertainty and error can be handled using 
these types of computational structures? What are 
the costs (and trade-offs) in processing and com- 
munication to resolve the various types of errors? 
110~ does the quality of knowledge used in the net- 
work affect the amount of uncertainty and error that 
can be accomodated? 

l Task characteristics and the selection of an appropriate 
network configuration: What characteristics of a task 
can be used t,o select the n&work configuration ap- 
propriate for it? When should problem solving 
among nodes be organized hierarchically? What type 

of authority relationship should exist among nodes? 
Should nodes be completely self-directed or should 
there be certain nodes that decide explicitly what 
other nodes should do, or should there be a nego- 
tiation structure among nodes (Smith & Davis 1981)? 
Similarly, should information be transmitted on a 
voluntary basis or only when requested or some mix- 
ture of these policies? 

The candidate task characteristics to evaluate included 
the size of the network and the communication topol- 
ogy; the type, spatial distribution, and degree of uncer- 
tainty in information; the quality of knowledge in the net- 
work;interdependencies among subproblems; and the size of 
the search space. 

Unfortunately, it was difficult to extend the distributed 
HEARSAY-II speech understanding system for these studies. 
There were two major reasons for this difficulty: the com- 
putation time needed to run experiments and inflexibilities 
in the design of the system. We discuss these reasons be- 
cause they point out, why extensive experimentation with 
large knowledge-based AI systems is very difficult. 

The use of an existing knowledge-based system as the 
basic underlying problem solving system in the experiments 
lent credibility to the simulation results and also avoided 
the extensive knowledge engineering that normally would 
have been required. The importance of having a concrete 
framework to explore ideas cannot be underestimated. Not 
until the problems of getting the HEARSAY-II speech un- 
derstanding network to work appropriately in a distributed 
setting were confronted did many of our intuitions about 
how to design distributed problem solving networks evolve. 
However, there were major negative implications of using 
the real HEARSAY-II speech understanding system. First, it 
was extremely time consuming to run the multi-node simula- 
tions since the underlying problem solving system was large 
and computationally slow. Second, the speech understand- 
ing system did not naturally extend to larger numbers of 
nodes and more complex communication topologies without 
significant changes to the system. In part, this is because 
the speech task is not a realistic distributed processing task 
and its sensory d’ata is one-dimensional (the t,ime dimen- 
sion). Third, efficiency considerations in the design of the 
speech understanding system led to a tight coupling among 
knowledge sources and the elimination of data-directed con- 
trol at lower blackboard levels. This tight coupling precluded 
the exploration of many interesting network architectures. 
It was not possible to configure nodes with only a partial 
set of knowledge sources without significant modifications to 
the knowledge source interaction patterns. Fourth, the sheer 
size and complexity of knowledge source code modules made 
modification a diflicult and time consuming process. 

Basically, the flexibility of the HEARSAY-II speech un- 
derstanding system (in its final configuration) was sufficient 
to perform the pilot experiments, but was not appropriate for 
more extensive experimentation. Getting a large knowledge 
based system to turn over and perform creditably requires 
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a flexible initial design but, paradoxically, this flexibility is 
often engineered out as the system is tuned for high per- 
formance. Extensive experimentation, if not originally con- 
ceived and maintained as a goal of the system design, is a 
difficult task. 

The Distributed Vehicle Monitoring Testbed 

This section introduces the distributed vehicle monitor- 
ing testbed, a flexible and fully-instrumented research en- 
vironmcnt constructed for the empirical eva.lua.tion of al- 
ternative designs for functionally accurate, cooperative dis- 
tributed problem solving networks. The concept of the 
tcstbed evolved from: 

. An understanding of bot,h the difficulties and im- 
portance of an empirical approach to issues in dis- 
tributed problem solving;’ 

l The need for a realistic environment for exploring 
new paradigms for obtaining global coherence 

IIere, the motivation for the t,est,bed, its basic structure, 
and its paramcterization and measurement capabilities arc 
described. 

Motivation 

Our approach to designing the testbed was to: 

1 Take a realistic distributed problem solving t,ask and 
appropriately abstract it to reduce the problems of 
knowledge engineering, to speed up problem solving, 
and to make it a more generic and parameterizable 
f,ask; 

2 Develop for this abstracted task a distributed proh- 
lem solving system that can model (through ap- 
propriate parameter settings and pluggable modules 
of code) a wide class of distributed problem solving 
architectures; 

3 Create a simulation system that can run this dis- 
tributed problem solving system under varying en- 
vironmental scenarios, different node and communica- 
tion topologies, and different task data. 

We feel that this approach is t,he only viable way to gain 
extensive empirical experience with the important issues in 
the design of distributed problem solving systems. In short, 
distributed problem solving networks are highly complex. 
They are difficult to analyze formally and can be expensive 
to construct, to run, and to modify for empirical evaluation. 

‘WC had, in fact, earlier embarked on the development of such an 
environment,, based on what we called the Distributed Processing Game 
(Lesser &: Corkill, 1978), but failed This venture failed because we 
had chosen an application for which the knowledge engineering was so 
complex and our understanding of the task was so vague that we could 
not develop sufficient. knowledge for the system to turn over 

Real distributed problem solving applications are difficult 
to construct due to the large knowledge acquisition and en- 
gineering effort, required, and once built, they are difficult 
to instrument and modify for expcrimcntation. Thus, it, is 
dificult and expensive to gain these experiences by develop- 
ing a “real” distributed problem solving application in all its 
detail. 

Likewise, WC see the formal modelling route as not vi- 
able. The research in distributed problem solving is still in 
its infancy and formal analytic approaches are not yet avail- 
able. Underlying, the development of analytical approaches 
are intuitions gained from experiences with actual syst,cms. 
Without sufficient intuitions for appropriately simplifying 
and abstracting network problem solving, the development of 
a model that is both mathematically t,ractahle and accuratr 
is difficult. 

Our hope is that the t&bed will provide the appropriat,e 
environment for acquiring this experience and will evcn- 
tually be useful in evaluating the accuracy of t,he analyti- 
cal models2 Especially important are experiences with large 
distributed problem solving networks of ten to hundreds of 
nodes. It is with networks of this size the we expect to see 
the problems of cooperation and coherence dominate and 
where important intuitions about how to design distributed 
problem solving networks will arise. 

In summary, the empirical approach taken here repre- 
sents a compromise between the reality of an actual system 
and simplicity of an analytical model. We have abstracted 
the task and simplified the knowledge but still are pcr- 
forming a detailed simulation of network problem solv- 
ing. It should be mentioned that even with significant, 
simplifications the building of the testbed was a substa.ntial 
implementation eflort. However, in contrast to the construc- 
tion of a “real” application where considerable efiort must be 
spent in knowledge engineering, our efforts have been spent in 
parameterizing the problem-solving architecture and making 
the testbed a useful experimental tool 

Why Distributed Vehicle Monitoring? 

Distributed vehicle monitoring has four characteristics 
that make it an ideal problem domain for research on dis- 
t,ributed problem solving. 

First, distributed vehicle monitoring is a natural task fol 
a dist,rihuted problem solving approach since the acoustic 
sensors are located throughout a large geographical area. 
The massive amount of sensory data that must. be reduced 
to a highly abstract, dynamic map seems appropriate for a 
distributed approach. 

Second, distributed vehicle monitoring can be formu- 
lated as an interpretation task in which information is in- 
crementally aggregated to generate the answer map Nilsson 

2The t,esthed is already beginning to he used in this manner See the 
work by Pavlin (1983) on initial attempts at formulating a model fol 
distributed intrepret,ation systems 

20 THE AI MAGAZINE Fall 1983 



has termed systems with this characteristic commutative 
(Nilsson 1980). 

Commutative systems have the following properties: 

1. Actions that, are possible at a given time remain pos- 
sible for all future times. 

2. The system state that results from performing a se- 
quence of actions that are possible at a given time is 
invariant under permutations of that sequence. 

Commutativity allows the distributed vehicle monitor- 
ing network to be liberal in making tentative initial vehicle 
identifications, since generation of incorrect information 
never precludes the lat,er generation of a correct answer 
map. Without commutativity, the basic problem solving 
task would be much more difficult. 

Although the generation of the answer map is commuta- 
tive, controlling node activity is not. Here we enter the realm 
of limited time and resources. If a crucial aspect of the 
answer map is not, immediately undertaken by at least one 
node in the network, the network can fail to generate the map 
in the required time In the determination of node activities, 
mistakes cause the loss of unrecoverable problem solving time 
and can therefore clirninate the possibility of arriving at a 
timely answer map. If the nodes and sensors are mobile, 
their placement, adds another non-commutative aspect to t,he 
distribut,ed vehicle monitoring task; a misplaced node or sen- 
sor can require substantial time to be repositioned. (We are 
currently limiting our investigations to stationary nodes and 
sensors.) 

Third, the complexity of the distributed vehicle monitor- 
ing task can be easily varied. For example: 

l Increasing the density of vehicle patterns in the 
environment increases the computational and com- 
mumcation load on the network. 

l Increasing the similarity of the vehicles and patterns 
known to the network increases the effort required t,o 
distinguish them 

l Increasing the amount, of error in the sensory data in- 
creases the effort required to discriminate noise from 
reality. 

Fourth, the hierarchical task processing levels coupled 
with the spatial and temporal dimensions of the distributed 
vehicle monitoring task permit a wide range of spaCal, tem- 
poral, and functional network decompositions. Node respon- 
sibilities can be delineated along any combination of these 
dimensions. 

An important decision in the design of the testbed was 
the level at which the network would be simulated. An 
abstract modeling lcvcl, such as the one used by Fox (1979), 
that represents the activities of nodes as average or prob- 
abilistic values accumulated over time would not capture the 
changing intermediate processing states of the nodes. It is 
precisely those intermediate states that are so important in 
both building and evaluating in a realistic way different net- 

work coordination strategies. Instead, the testbed duplicates 

(as closely as possible) the data that would be generated in 
an actual distributed vehicle monitoring network as well as 
the effect of knowledge and control strategies on that data 
This approach also allows users of the t,estbed to receive 
concrete feedback about how their algorithms are perform- 
ing However, because the purpose of building tha testbcd 
is to evaluate alternative distributed problem solving net- 
work designs rather than to construct an actual distributed 
vehicle monitoring network, a number of simplifications of 
the vehicle monitoring task were made (Table 1). The goal of 
these simplifications was to reduce the processing complexity 
and knowledge engineering effort required iu the testbed 

The major t,ask simplifications in the Distributed 
Vehicle Monitoring Testbed include: 

l The monitoring area is cxprcssed as a two-dimensional 
square grid, with a maximum spatial resolution of one 
unit square. 

l The environment, is not sensed continuously Inst,rad, 
it is sampled at, discrete time intervals called tame 
frames 

l E’requency is represented as a small number of fre- 
quency classes 

l Communicat,ion from sensor to node uses a different, 
channel than internode communication. 

l Int,ernode communication is subject to random loss, 
but, if a message is received by a node it is received 
without error 

l Sensor to node communication errors are treated as 
seusor errors. 

0 Signal propagation times from source to sensor are 
processed by the (simulated) low-level signal process- 
ing hardware of the sensor; 

l Sensors can make three types of errors: failure to 
detect a signal; detection of a non-existent signal; and 
incorrect determination of the location or frequency 
of a signal. 

l Sensors output signal events, which include the loca- 
tion of the event (resolved to a unit square), time 
frame, frequency (resolved to a single frequency class), 
and belief (based on signal strength) 

incompletely resolved location or frequency of a signal 
is represented by the generation of mult,iple signal 
events rather t,han a single event wit,11 a range of 
values 

Nodes, sensors, and iuternode communication chan- 
nels can temporarily or permanently fail without, 
warning 

Table 1. 
The Simplified Vehicle Monitoring Task 
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without significantly changing the basic character of the dis- 
tributed interpretation task. 

I 

A second design decision was to instrument the testbed 
fully. The testbed includes measures that indicate the 
quality of the developing solution at each node in the net,- 
work, the quality of the developing solution in the network as 
a whole, and the potential effect of each transmitted message 
on the solution of the receiving node. This is made possible 
through the use of an oracle containing the structure of the 
actual problem solution. 

Resolver 

-I I 

I 
Consistency 
Blackboard 

A third decision in the design of the testbed was to make 
it parameterized. Experience with complex artificial intel- 
ligence systems demonstrated the difficulty of experiment- 
ing with alternative knowledge and control strategies. As 
a result, potential experimentation with the system is often 
not performed. Incorporated into the testbed are capabilities 
for varying: 

l The knowledge sources available at each node, per- 
mitting the study of different problem solving decom- 
positions; T 

. The accuracy of individual knowledge sources, per- 
mitting the study of how different control and com- 
munication policies perform with different levels of 
system expertise;3 

. Vehicle and sensor characteristics, permitting control 
of the spatial distribution of ambiguity and error in 
the task input data; 

Figure 2: Testbed Node Architecture. 

. Node configurations and communication channel charac- 
teristics, permitting experimentation with different 
network architectures; 

. Problem solving and communication responsibilities 
of each node, permitting exploration of different 
problem solving strategies; 

. The authority relationships among nodes, permit- 
ting experimentation with different organizational 
relationships among nodes. 

The result, is a highly flexible research tool which can be 
used to explore empirically a large design space of possible 
network and environmental combinations. 

HEARSAY-II 4 system (Erman et al 1980), capable of solv- 
ing the entire vehicle monitoring problem if it is given all of 
the sensory data and makes use of all of its knowledge. This 
permits any subset, of the knowledge sources to be used at a 
node and allows the simulation of a single node (centralized) 
system to provide a benchmark for various distributed net- 
works monitoring the same environment. 

Testbed Node Architecture 

The Distributed Vehicle Monitoring Testbed simulates 
a network of HEARSAY-II nodes working on the vehicle 
monitoring task. Each node is an architecturally-complete 

3The quality of the knowledge used by each node to distinguish be- 
tween consistent and inconsistent data plays a major role in the suc- 
ces~ of a functionally accurate, cooperative approach A network using 
low quality knowledge is unable to detect subtle inconsistencies among 
tentative partial results and may be unable to arrive at an acceptable 
solution As the quality of knowledge used in the network is improved, 
the network should generate an answer with greater accuracy in less 
time. 

The basic HEARSAY-II architecture has been extended in 
each testbed node to include the capability of communicating 
hypotheses and goals among nodes, more sophisticated local 
control, and an interface to meta-level network coordination 
components (Corkill 1981, 1982, 1983). In particular, com- 
munication knowledge sources, a goal blackboard, a plan- 
ning module, and a meta-level control blackboard have been 
added (Figure 2). The testbed also has several components 
that, are used to measure the performance of each node and 
the overall network and to vary the “intelligence” of each 
node’s knowledge sources and scheduler. These components 
are the consistency blackboard and the knowledge source and 
scheduler resolvers. 

The Structure of the Data Blackboard 

4 With knowledge sources appropriate for the t,ask of vehicle monitoring Hypothesized vehicle movements are represented on the 
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data blackboard. This blackboard is partitioned into four 
task abstraction levels: signal, group, vehicle, and pattern 
(Figure 3). Szgnals are at the lowest abstraction level and are 
the output of low-level analysis of sensory data. Each signal 
includes the frequency, approximate position, time frame of 
detection, and belief (based partly on signal strength and 
sensor quality) of the acoustic signal as well as the identity 
of the detecting sensor. Signals are the basic input to the 
problem solving network. 

At the next level in the data hierarchy arc signal 
groups. A group is a collection of harmonically related signals 
(emanating from a common source). Each group includes 
the fundamental frequency of the related signals and its ap- 
proximate position, time frame, and belief (a function of the 
beliefs and characteristics of the relat,ed signals). 

Vehicles are the next level in the data hierarchy. A 
vehzcle consists of a collection of groups associated with a 
particular vehicle. Vehicles include the identity of the vehicle 
and its time frame, approximate position, and belief. 

At the highest level of processing a.re vehicle patterns. 
A pattern is a collection of part,icular vehicle types with a 
particular spatial relat,ionship among them. Patterns were 
included in the testbed to investigate the effects of strong 
const,raints between distant nodes. A pattern includes the 

Vehicle Patterns 

Vehicles 

Signal Groups 

Signals 

Figure 3 Vehicle Monitoring Task Processing Levels 
Forming a vehicle pattern from sensory signals involves com- 
bining harmonically related signals into signal groups Various 
signal groups can collectively indicate a part,icular type of 
vehicle Specific vehicle types with a particular spatial 
relationship among themselves form a vehicle pattern. 

identity of the pattern and its time frame, approximate posi- 
tion, and belief. A single vehicle can be a pattern. 

The desired solution, or answer map, is produced from 
the vehicle patterns based upon their beliefs and continuity 
over time. There are two types of answer map distribution: 
one where a complete map is to be located at one or more 

answer sites within the monit,ored area and one where a par- 
tial (spatially relevant) map is to be located at numerous sites 
within the area In distributed vehicle monitoring tasks such 
as air or ship trafic control, both distributions of the answer 
map may be required. Each node might use its portion of the 
distributed map to control nearby vehicles, while the com- 
plete map might be produced for ext,ernal monitoring of the 
network. 

Each of these four abstraction levels is further divided 
into two levels, one containing location hypotheses and one 
containing track hypotheses. A location hypotheses rcprc- 
sents a single event at a particular time frame A truck 

hypothesis represents a connected sequence of events over a 
number of contiguous time frames. 

These orthogonal partitionings result in the eight black- 
board levels shown in Figure 4. Location hypotheses arc 
formed from location hypotheses at the next lower abstrac- 
tion level. Track hypotheses can be formed from loca- 
tion hypotheses at the same abstraction level or from track 
hypotheses at, the next lower level. The task processing level 
most appropriate for shifting from location hypotheses to 
track hypotheses is dependent on the problem solving situa- 
tion. 

The relationships among the hypotheses at each level is 
supplied to the testbcd as part of a testbcd gmmmnr. Chang- 
ing the grammar automatically varies behavior throughout 
the test,bed. By increasing the size and connectivity of the 
grammar, the interpretation task can be made more difficult 
Another aspect of a testbed grammar that specifies the 
difficulty of the interpretation task involves tracking vehicle 
movement. The tracking component, of a testbed gramma] 
contains two values: the maximum velocity of a vehicle (and 
implicitly, events a.t all levels) and the maximum acceleration 
of a vehicle. These values are used in the creation and ex- 
tension of track hypot,heses. By reducing the constraints on 
vehicle movement, the tracking task becomes more difficult. 

Knowledge Source Processing 

An important consideration in developing the set of 
knowledge sources for the testbed was t,o structure processing 
so that information could be asynchronously transmitted and 
received at any blackboard level. This permits exploration 
of a wide range of different processing decompositions based 
on partially configured nodes (nodes without all knowledge 
sources) without, modifying the knowledge source modules 
and local control structures. 

There are six basic problem solving activities performed 
by the processing knowledge sources in the testbed. They 
are: 

Location Syntheszs - Abstracting location hypotheses at 
one level of the blackboard into a new location hypothesis 
at the next, higher location level 

Truck S@heszs - Abstracting track hypotheses at, one 
lrvel of the blackboard into a new track hypothesis at 
the next higher track level 
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Details of Goal Processing in a Node 

answer 
map 

sensory 
data 

I?gure 4 Blackboard J,evcls in t,hc ‘I’estbcd 
The eight blackboard levels in the testbed are: location 

(SL) signal Crack (ST) group location (GL) group track 
(CT) vehicle location (VL) vehicle t,rack (VT) patt,ern 
location (PL) pat,t,ern tzack (PT) The arrows indicate 
the four possible synthesis pat.hs from sensory data to 
generation of the answer map 

Track Formation Combining a location hypothesis in 
one time frame with a “matching” location hypot,hesis 
in ELII adjacent tirnc frsmc t,o form a one-segment t,rack 
hypot,hesis 

Track Ez~&sio?~ Ext,cnding a track hypothesis into an 
adjacent t,imc frame hy colllbining it with a “matching” 
locat>ion 

Locatzon-to- Track Joinzng Taking a loca Lion hypothesis 
and corltbining it with a “mxt,ching” track hypothesis 
that begins or ends in an adjacent t.ime frame 

Track Mergang Merging two overlapping or abutting 
t,rack hypotheses into a single track hypothesis at t,he 
same abst.racl.ion level 

In order to permit, more sophisticated forms of cooper:~- 
Con among nodes in the system, we have integrated goal- 
directed cont,rol into t,he data-directed cont,rol struct,ure 
of the basic HEARSAY-II architecture This has been ac- 
complished through the addition of a goal blackboard and a 
planner. 

The goal blackboard mirrors the structure of the data 
blackboard. Inst,ead of hypotheses, the basic data units are 
goals, each representing an intention t)o crcat,c or cxtcnd a 
hypothesis with particular at,t,ributes on the dat,a blackboard 
For example, a simple goal would be a request, for the creation 
of a vehicle location hypol,hesis above a given belief in a 
specified area of the dat,a blackboard.” 

Goals are created on the goal blackboard by t,hc black- 
board monztor in rcsponsc to changes on the data black- 
board These goals explicitJy represent, t,he node’s int,cntion 
to abstract- or extend particular hypotheses. (:oals received 
from another node may also be placed on the goal black- 
board Placing a high-level goal onto the goal blackboard 
of a node can elrectively bias the node toward developing a 
solution in a particular way. 

The planner responds to t,hc insertion of goals on the 
goal blackboard by developing plans for their achievement8 
and instantiating knowledge sources to carry out those plans 
The sched?Ller uses the relationships between the knowledge 
source instant,iatioris and the goals on the goal blackboard 
as a basis for deciding how the limited processing and COJW 
mrmication resources of the node should he allocated 

Communication Knowledge Sources 

Inl,ernode communication is added t,o the node archit,cc- 
t,ure by the inclusion of conznmnzcataon knowledge sources 
These knowledge sources allow the exchange of hypotheses 
and goals among nodes in the same independent and asynch- 
ronous style used by the other knowledge sources There are 
six types of communication knowledge sources in t,he t,est,bcd: 

Hypotheszs Send ~ Transmits hypotheses created on t,he 
blackboard to other nodes based on the level, tirnc frame, 
location, and belief of the hypothesis 

Hypotheazs Receive ~ Places llypothcscs received from 
otller nodes onto the node’s blackboard Incoming 
hypotheses are filtered according t,o the char;tct.crist,ics 
of t,he received hypothesis to ensure t,hat. t,he node is in- 
terested in t,he information Hypot.hcsis Receive uses a 
simple 111odel of the credibility of the sending node to 
possibly lower the belief’ of’ t,he received hypothesis before 
it, is placed on the blackboard 

“An important aspect in t.he st~uct,ure of thp inte~rntrd control ar- 
r:hit,ect,ul e is a COI responder~ce k)et.wcxm the blackboard al WI covered hy 
t,he goal and the blackboard area of the desired hypothesis This CVX- 
rcspondcnce allows t.he pIanne to relate goals and hypotheses quickly 
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Goal Send ~ TransmiLs goals created on the goal black- 
board to other nodes based on the level, time frames, 
regions, and rating of t,hc goal Coal Send t,ransmit,s 
goals based on meta-level control information ~ whct,hel 
or not the node is (,o attempt to achieve the goal locally 

Gonl Help ~ Transmits goals that the node’s planner has 
determined cannot l)e satisfied locally (possibly after ex- 
ecuting a number of local problem solving knowledge 
sources) 

Gonl Recezve ~ Places goals received from other nodes 
onto t,hc node’s goal blackboard. Incoming goals are 
filtered according to the characteristics of the received 
goal to ensure that the node is interested in receiving 
goals of that type Goal Rcccive uses a simple model of 
t,lle node’s authority relationship with the sending node 
to possibly lower the rating of the received goal hcforc 
it is placed on t,he l>lackboard 

Goal Reply ~ Transmits hypot,heses created on the hlack- 
board in response t,o a received goal requesting informa- 
tion from the node 

Experimentation with more complex versions of these 
communication knowledge sourc:es is easily accomplished by 
simulating a more sophisticated knowledgn source by: 

. modifying its power (cf Modifying Knowledge 
Source Power); 

l modifying the code of t,he knowledge source to use 
nlore sophisticated knowledge in its choices (this can 
done hy adding codr that filters the input or output 
of the knowledge source); 

. completely replacing a knowledge source with an al- 
ternative module 

Measuring Node and Network Performance 

An important aspect of our use of the test,bed is measur- 
ing the relative performance of various distributed prob- 
lcm solving configurations and strategies. For example, we 
conjecture that in a network with accurate knowledge and 
with input data that has low error, organizing the system 
hierarchically and using an explicit control and communica- 
tion slrategy would bc effective Likewise, we condecturc 
that in systems wit,h weaker knowledge sources and with 
more errorful input data, more cooperative and implicit, 
cont,rol/communication strategies are desirable 

In order t,o miderstand the reasons for differences in the 
performance characteristics of alternative systems organiza- 
tions, dynamic measures are needed that take into account 
the intermediate state of system processing and thus permit 
observations of performance over time. For example, one way 
of measuring the effectiveness of diKerent comlnllIlication 
strategies is to develop measures that evaluate the elrect of 
each transmitted message on the current processing state of 
t,he receiving node. The need for measuring the intermediate 
stales of processing have led us to develop a semi-forma.1 

model for analyzing how a IIEARSAY-II-like system cow 

structs a11 accurate solution and resolves the uncertainty and 
error in its input data (Lesser 1980) This measure increases 
as the system becomes more certain of the consistency of 
“correct” hypotheses and decreases as the syst,em becomes 
more certain of the consistency of “incorrect” hypotheses 
The “correctness” of hypotheses is obtained from a hidden 
data struct,urc called the conszstency blnckboard, which is 
prccomputed from the siInlllation input data. This black- 
board holds what the interpretation would be at each infor- 
mation level if the syst,em worked with perfect knowledge. 
This blackhoard is not part of the basic problem solving ar- 
chit,ect,ure of a node but, rather is used to measure problem 
solving performance from the perspective of the sinlulation 
input. data. The consistency blackboard is also used to mark 
consistent and false hypotheses (and thr activities associated 
with them) in system output, 

Modifying Knowledge Source Power 

One parameter that can have a significant effect on the 
performance of the network is the problem solving exper- 
tise of the nodes. The ability of a knowledge source to 
detect, local consistencies and inconsistencies among it,s input. 
hypotheses and to generate appropriate output hypot,hescs 
is called the power of the knowledge source Knowledge 
source power ranges from a perfect knowledge source ublr 
to create output hypotheses with beliefs that reflect even the 
most, subtle consistencies among its input hypotheses down 
to a knowledge source that creat,es syntactically lcgitimatc 
output hypotheses without regard to local consistency and 
with beliefs generated at random. Note that a perfect 
knowledge source is not the same as an omniscient one. A 
perfect knowledge source can still generate an incorrect ollt- 
put hypothesis if supplied with incorrect., but, completely 
consistent, input hypotheses 

The testbed can modify the power of a knowledge source 
to be anywhere along this range. This is achieved by separat- 
ing each knowledge source into two stages: a candidate 
generator and a resolver. The candidate generator stage 
produces plausible llypotheses for the output, of the know- 
ledge source and assigns each hypothesis a tentative belief 
value. The candidate generator stage for each knowledge 
source in the test,bed incorporates relatively simple domain 
knowlrdgc There are two types of knowledge used in the 
candiate generator to form possihlc output hypotheses hascd 
on patterns of input hypotheses. One type of knowledge 
derives patterns from the particlllar testbed grammar and 
knowledge of sensor error characteristics. The other type 
of knowledge is used to compute a belief for each output 
hypothesis using the belief’s of the input hypotheses and 
knowledge about the relative consistency of the inpul, pat- 
tern All of the knowledge used by the candidate generator is 
easily varied through either parameter settings or pluggable 
code modules 

The next st,age, the resolver, uses information provided 
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t,y the consist,enry blackboard to minimally alLer the initial 
belief values of l~l~~sc plausible hypotheses to achicvc, ou 
the avcrugc, a knowledge source of the desired power. The 
hypot,heses with the highest alt,ercd brlicfs arc then used by 
the resolver stage as the actual out,put, hypot,heses of the 
knowledge source. 

The alteration of hypothesis belief values by the resolver 
stage can be used to simulalc the detection of more subtle 
forms of local consistency than is provided by the candidat,e 
generator’s knowledge (and t,hereby increase the apparent 
power of the knowledge source). Hypot,hesis belief alt,eration 
can also be used to degrade the performance of the candida.t,e 
gcncrat,or (and l,hcrcby reduce the apparent. power of the 
knowledge source) ’ 

Even with the flexibility and detail of our approach, 
there arc limit,at,ions: 

l Our simulation of’ knowledge source resolving power 
is leased on a combination of simple knowledge about, 
local consistency and rcfcrcnce t,o an oracle, while 
real knowledge sources attempt to infer truth from 
local consistency alone (and falsehood from local in- 
collsisterlcy) 7 

l The behavior of different simulated knowledge sources 
sharing similar errors in knowledge will not, be cor- 
related due to our statistical approach t,o knowledge 
source sitrlulaLiotl 

Given these liniit,ations, we do not expect a simulat,ed 
knowledge source to behave exactly as a real knowledge 
sotirce WC feel, howcvcr, that t,he essential behavior of 
each knowledge source has been captured so t,hat, system 
phenomrna are adcquwt.ely simulated. 

Local Node Control in the Testbed 

An important. capability of the t,esthed is l,he ease with 
which ult,ernate control and communication stralegies can he 
explored. This exploration has t,wo aspects. The first, is the 
ahilil,y t,o perform experiments comparing the performance of 

“The wo1 k by Paxi.on on t.he sI<l speech underst.anding system (Paxton 
1978) comes closest to our approach He used ground consistency in- 
formation Lo simlllat,e statistically the output of the low lcvcl acoustic 
processor in Lhc SRI speech systcrn 0111 approach differs from 1%. 
ion’s in that it dynamically relates charact,cristics of the inputs of a 
knowledge soucc to the characteristics of its outputs, while Paxton’s 
does not. The ouLpuL of his model depends on precomputcd behavioral 
statistics which are independent of the belief values and consist,ency 
values of it.s inputs Because of this difference, we ale able Lo simulate 
any or all knowlcdgc ~~mces in om system, while Paxton’s model is 
valid only for flont-end ploccssing of input data similar IO those used 
t.o compute the stat.isLirs 

71n older to capture more closely the notion of local consistency, WC 
can include on t.hc consistency blackboard false hypothcscs t.haL would 
appeal to t)e consistrnl, by even a pcrfcct knowledge source operating at 
that blackhonl d level The resolves judges the consistency of these false 
hypolheses (termed “co1 related-false” hypotheses) in the same way as 
it does tlue hypotheses 

different, contzol st,rat,egies (for example, t,he performance of 
a hierarchical network versus a lat,erally organized network) 
The second aspect is the ability to augment t,hc basic tcsthcd 
node archit,cct,ure wit,h additional control components (for 
example, adding a meta-level control component that, varies 
t,he organizational relationships among nodes dynamica.lly). 
l3otli types of experimentation are possible with the LesLbed. 
This section discusses how the local node control archit.ecLlirc 
has been structured to accomplish both types of cxperimcll- 
t.atioii. 

Interest Areas 

A key aspect of the control framework implemented in 
the tcsthcd is the nse of a nonprocedural and dynamically 
variable specification of the behaviors of each local node’s 
planner, its scheduler, and its communication knowledge 
sources. Called znterest areas, these data structures reside on 

the m&a-level control blackboard and are used to implement, 
particular network configurations and coordination policies. 

There are six s&s of int,erest areas for each node in the 
testhed: 

Local Processzny Interest Areas ~ InAucncr the local proh- 
lern solving activities in t,hc node by modifying tllc 
priority ratings of goals and knowledge source instan- 
tiations and the behavior of the node’s planner and 
scheduler 

Hypotheszs Transrnisszon Interest Areus ~ Influence the bc- 
llavior of IIYP-SEND knowledge so~~rccs in the node 

IIypotheszs Reception Interest Areas Influence i,hr be- 
havior of HYP-RECEIVE knowledge sources in the node 

Goal Transnlzssion Interest Areas ~ Influence the behavior 
of GOALSEND knowledge sources in t11e nodr 

Goal Help Trnnsmasszon Interest Areas ~ Influenw 111~: lx- 
havior of GOALHELP knowlcdgc sollrces in the node 

Gonl Reception Interest Areas ~~ Influence t,he behavior of 
COAL-KECEFVE knowledge sollrces in the node. 

Each interest arca is a list of regions of the data or goal 
blackboard. 

t5ach local processing interest area has a single paramet,ei 
associated with it,: a weight specifying t,hc imporl,ancc of per- 
forming local processing within t,he interest area. Transmis- 
sion int,erest, areas (hypothesis t,ransmission, goal t.ransmis- 
sion, and goal help transmission) are specified for one or more 
lists of nodes that are to receive information from the node. 
Similarly, reception interest areas (hypothesis rcccption and 
goal reception) are specified for lists of nodes t,hat, are LO 
transmit information to t,he node Each tzansmission intcr- 
est area has a weight, specifying t,he import,ance of t,ransmit- 
ting hypotheses or goals from that, arca (to nodes specified 
in t,he node-list,) and a threshold value specifying the min- 

imum hypothesis belief or goal rating needed to transmit 
from t,hat, area Each reception inter& area has a weight, 
specifying the import,ance of receiving a hypothesis or goal in 
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that area (from a node specified in the node-list), a minimum 
hypothesis belief or goal rating needed for the hypothesis 01 

goal to be accepted, and a credibility weight. The credibility 
weight parameter is used to change the belief of received 
hypot,heses or t,he rating of received goals. A node can reduce 
t,hc effect of accepting messages from a no& by lowering t,he 
belief or rating of messages received from that node Each 
hypot,hesis reception interest area also has a focusing weight 
parameter that is used t,o determine how heavily received 
hypotheses are used in making local problem solving focusing 
decisions. 

Rating Goals and Subgoaling 

Goal ratings specify the importance of creating hypo- 
theses with particular attributes on the data blackboard. 
They influence the behavior of the planner, the scheduler, 
and the goal communication knowledge sources. The know- 
ledge source inst,antiation rating calculation is basically 
a weighted su111 of a data-directed and a goal-directed 
component. The data-directed component captures the 
expected belief of an output hypothesis (as specified in 
the knowledge source instantiation’s output.-set, attribute) 
The goal-directed component, measures the ratings of goals 
that would be satisfied (at least, in part) by an output 
hypothesis. The goal-weight,ing parameter can be adjusted to 
change the importance given to producing strongly believed 
hypotheses versus satisfying highly-rated goals. Gaussian 
noise is added to the rating calculation to simulate knowledge 
source precondition procedures with imperfect output hypo- 
thesis estimation capabilities 

In addition t,o instantiating knowledge sources to achieve 
a goal, t,he planner can also create subgoals that reflect the 
importance of lower-level data in achieving the original goal 
and that, if satisfied, increase the likelihood of achieving 
the original goal. Suhgoaling is an effective means of focus- 
ing low-level synthesis activities based on high-level expccta- 
tions.’ 

The knowledge needed 1.0 perform subgoaling is based 
on the behavior of the t,cstbed knowledge sources and is 
paramet,erized by the grammar. Hecause subgoaling requires 
some effort,, its use needs to be controlled. In the testbed, 
subgoaling is controlled in two ways: by restricting subgoal- 
ing t,o particular levels and by a minimum rating threshold 
for a goal to be subgoaled. The relative settings of these 
parameters strongly influence the balance between local and 
external direction ECxamplcs of how specific control and 
communication relationships are spccitied in the testbed are 
presented in a recent, paper (C:orkill R: Lesser 1983). 

8Therc arc no prediction knowledge sources in the testbed Prodict,ive 
knowledge is used by tho planner to genrrate predictive goals that, can 
he subgoaled to ~WAIS activity on lower blackboard lrvrls 

Knowledge Source Precondition Procedures 

The overall performance of each notlc dcpc:~~ts on th 

ability of its planner and scheduler to correct.ly estimntc 
which of the potential knowledge source actions is nwst likely 
to improve the current problem solving &ate as well as the 
cost of performing that action. III “real” syst,c:ms, this es- 
timation is based in part. on information provided by each 
knowledge source to the scheduler about the output, the 
knowledge source is likely to produce given particular in- 
put hypotheses (the knowledge source respo~zse frame (JIayes- 
Roth & Lesser 1977). This estimation is usually fast, and 

approximate it is made without, a dctailetl analysis of the: 
knowledge source’s input data. Increasing unccrtaint,y in t,his 
estimation makes it less likely that the planner and schedulc~ 
will appropriately decide what knowledge source actions to 
perform. 

In order to investigate the elrects of this uncertainty the 
testbed simulation preexecutes the entire knowledge source as 
the precondition procedure. The knowledge sollrce dots not, 
actually create any hypotheses or goals, but instead plarcs 
an exact specificat,ion of t,hcir at,t,ributes in the output-sef at.- 
tribute of the knowledge source inst,antiat,ion. The out,put- 
set, provides a.n exact description of what the knowledge 
source instantiation will do if executed (The output-set, is 
updated if the input cont,ext of the knowledge source instan- 
tiation is modified while it is awaiting execution ) The ac:t,ual 
hypotheses or goals are creat,ed when the knowlctlgc source 
instant,iation executes. 

The information contained in the olltpllt-set allows the 
knowledge source instantiation rating to be made with pcr- 
feet, knowledge of the knowledge source instantiation’s bc- 
havior. Precondition procedures with less than pcrfcct cs- 
timxtion luffi abilities are simulated by perturbing these per- 
fect ratings. The details arc drscribctl in the next. section 

Rating Knowledge Source Instantiations 

The knowledge source instantiation rating calclllation 
is basically a weighted sum of a data-directed and a goal- 
dired,ed component The data-directed component capt,urcs 
the expected belief of an output, hypothesis (as specified in 
the knowledge source inst,alit,intiori’s output,-set attribute). 
The goal-directed component measures t,he ratings of goals 
that would be satisfied (at least in part) by each output 
hypothesis. The goal-weight,ing parameter adjusts the irn- 
portance given to satisfying highly-rated goals versus produ(:- 
ing strongly believed hypotheses The weight,ed SUIII of these 
two components is computed for each output hypot,hcsis in 
the knowledge source instantiation’s output-set att,ribut,r and 
the maximum value (multiplied by the knowledge sourer 
efficiency estimate) is used as the lease rating for knowlcdgc 
source instantiation 

Since the tcstbed precondition procedures precompute 
t,he actual output, hypotheses of the knowledge SOIIIW irl- 
stantiation, the scheduler’s base rat,ing calculation uses the 
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exact beliefs of t,he out,put, hypotheses and t,he goals that, 
they satisfy Gaussian noise can bc added to this base rat- 
ing t,o simulate the cffcc’ects of knowledge source precondition 
procedures that are imperfect, in their cst,imation of output 
hypotheses’s beliefs and of goal satisfaction. 

The knowledge sources’ precondition procedures USC in- 
formation localized to A particular region of the data black- 
board in cstimat,ing the belief values of output hypot,hcses. 
On the ot.hcr hand, the scheduler is in a position t,o dct,cr- 
miilr how a knowledge source instant,iat,ion’s cxpect,ed out,- 
put. hypotheses fit. inLo the overall developing solution at, the 
node. This difl’crcncc in viewpoint, leads t,o an inl,errst,ing 
engineering issue. Should the scheduler rely solcly on the 
myopic estimations of the prccondit,ion functions in rating R 
ltnowledgc source inst,antiat.ion or should it hc given domain- 
clcpcndcnt. knowledge of it,s own t,o dct,ermine consistcncics 
between knowlcdgc source inst,antiat.ions? ‘lh experiment, 
wit,h this issllc, an oracle wcight,ing in the data-dircct,ed con- 
poncnt can be llsed t,o int,roduc:e t,hc consist,cncy of each out,- 
put hypot,hcsis (as specified on the consistency blackboard) 
int,o t,hc rat,ing calclllation As with t,he knowledge source in- 
st,ant,iai,ions t,l~rn~sclvcs, t.his consist,ency information is used 
t,o simulate i,hc cffeci,s of developing additional knowledge 
which can bctt,Cr det,cct the consistencies among hypot.heses 

Facilities for Experimentation 

1’1~~ t,cstbed kernel is surrountlcd by :I number of othc1 
silbs,yst,ems t.0 facilit,atc cxI)erimcrit,at,iolIi by making it. easy 
to vary the parwmct,rrs of an experiment, and Lo analyze the 
rcsu1t.s of an experiment (Figilrc 5) 

I~l~ONTENI> knowledge sour(#e is the special, simulat,ion- 
level knowlcdgc source used to initialize the tesfhetl network. 
It, is always t.he first, knowledge sollrce executed in an cxperi- 
merit,. The FRONTICNI> reads a cornplcte specification of t,hc 
run from an input, file called t,he envzronmew! Jilt. The cn- 
vironrrlent, file contains all t.he input, data for the tcstl)ed, and 
consists of system, st,ructural, and environmental data Yys- 
tenl dntn drnot.es basic paramct.ers of Olie simulat,cd vchiclc 
monit,oring syst.em: a seed for random number generat,ion, 
the minimum and maximum location and time ranges, and 
t.hr n~~mbers of nodes and sensors. Strucfwal data denol,es 
t,he spat,ial relationships arnoug nodes and the grammar nsed 
by knowledge source candidate generators By varying this 
grammar, the nunibcr of legal patterns of hypotheses can bc 
varied. The most, const,raincd grammar would be one t,hat 
only allowed t,lic particular scenario for the cxperirnent. in 
question t,o bc recognized. Thus, the nat,ure and the scope 01 
consistency constraints used by knowledge sources t.o resolve 
errors can bc alt.crcd This abililv to modify (*he grammar 
combined with the ability 1.0 vary the local resolving power 
of knowledge source provides a powerful tool for varying t,lie 
knowledge cxpert,isc in t.hc sim~~lat~rrl syst~em. E~Lwzronnmztnl 
cl&n denot,es t,lie act.ual environment, for Olic vehicle monit,or- 
ing syst cm: loc::~t~ioris of pat,Lerris and vehicles at, various Liriie 
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frames, and inforniation concerning missing and falSC pat- 
Lcrns, vehicles, groups, ant] signals at, various tirile friLlll(:S 

EnvironmcrM data is used in caonjllnction with t.hc st,ruc:- 
tural data by the FRONTENI) t.o crea1.e the consist,enc:y 
blackboard. 

The environment file has gone through several design 
it,erations as we have recognized the irlt,erdel,erldcncics among 
t,hc pararnet,ers that must, be spccificd for a t,est,bed ex- 
perimcnt, and t.hc difficulties of correctly specifying t.hese 
paramct,ers for networks of more than a few nodes. In its 
present form, it allows the Spcc’ifiCi~t.iOIl of generic classes 
of nodc types, local problem solving capabilities, aul,horiLy 
relationships, c:oinmllnicat,ion policies, and sensor charac- 
teristics. ‘l’hcsc classes are t,hen instantiated to individual 
nodes and sensors in the network. 

The JCRONTEND, in its gcnerat,ion of sensor dat,a, can 
introduce controlled error (noise) to model imperfect, sensing 
Noise is added t,o t,he location and signal class and the dis- 
tance of the signal from the sensor I~RONTEND processing 
is also paraructcrized so t,hat either t.hese signals can bc in- 
t,rotluccd int,o t,hc nodes all at, once or at, the time t,hc:y arc 
sensed The former provision allows exploration of systems 
in which t,herc arc burst, recept,ions of sensor dat,a 

‘1’0 facilit~atc t*lie inclusion of additional c*ont,rol, dis- 
play, aiid measurement, rout,incs int,o :I p:irl,ic:ular cxperiIncnt., 
the tcstbcd has a number of programming “hooks” avail- 
able to the CxperimenLei Each hook consist,s of a dummy 
module t.hnt. can be easily redefined to inclutlr calls t,o t,hc 
cxpcrinict~cr’s procedures. In t’hc t.cs~hcd, thcrc is a hook 



at the beginning of the simulation, another hook follow- 
ing the FRONTEND (when all sensory dat,a and the consis- 
t,ency blackboard have been determined), one prior to each 
knowledge source execution at each node, one when messages 
are transmitted or received, and one when the simulation is 
finished. Each hook has sufficient information available (such 
as the current, node that is executing, the type of knowledge 
source t,o be executed, the simulation time, etc. ) to allow the 
experimenter’s procedures to decide whether or not they are 
interested in being executed. The experimenter’s procedures 
have complete access to all information in the testbed. 

In order to help in the analysis of the results of an ex- 
periment, a number of t,ools have been developed: a selec- 
tive trace facilit,y, a summary statistics facility, an interac- 
t,ive, menu-driven debugging facility, an event monitoring 
facility, and a color-graphics display fa.cility. Each of t,hese 
tools 11s~ t,he information on the consistency blackboard to 
highlight their presentations. For example, the trace facility 
marks knowledge source inst,ant,iations based on the correct- 
ness (consistency) of their input, and output hypotheses This 
permits the experiment,er to quickly scan a large amount of 
data for uncxpcctcd phenomena. 

The trace facility presents a chronological trace of the 
knowledge sources creation and execution and the associated 
creation of hypotheses and goals and a run The user can 
vary t,he lcvcl of details of the internal operations of the 
systems that are to be traced. 

The summary statistics facility is used at the end of a run 
to gcnrratc a set of measures that indicate the performance 
of various aspects of the systems. These statistics arc both 
on a node and system basis 

In addition to these fairly common analysis tools, we feel 
that there is riced for tools that, permit a more dynamic and 
high-level view of the distributed and asynchronious activity 
of the simulated nodes. An event monitoring facility, which 
has not yet been fully implemented, will permit a user to 
define and gather statistics on such user-defined events as 
the average time it takes for a node to receive a. hypothesis 
and incorporate the received information into a message to 
be transmitted to another node (Rat,es & Wiledcn, 1982). 

Another facility which is currently operational in a 
limited form is a color-graphics output facility. The current 
out,put display provides dynamic visual representations of 
the distribution of hypotheses in the x-y space of the Dis- 
tribut,ed Sensor Network during a simulation Location and 
track hypotheses are displayed as symbols and paths con- 
nccting symbols, respectively, in the physical x-y space The 
level, node, belief, and type of event, of each hypothesis is 
encoded in its representation. Through this display, it is 
possible t,o get a high-level view of the relationship a.mong 
the nodes’ current interpretations and their relationship to 
the a&la1 monit,ored tracks. The hypotheses displa,yed can 
be selected according to the characteristics of any of their 
attrihut,es For example, it is possible to display only those 
hypotheses above some belief value or those on a. certain 
level, etc. In acldit,ion, an ordering function exists to rank 

the hypotheses to be displayed according to several at,tribut,es 
(node, lcvcl, type of event, and end-time) allowing less impor- 
tant hypotheses to be replaced (painted over) by more impor- 
tant ones. We are also working on ot,hcr display formats that 
show more abstract, measures of syst,em performance such as 
the t,ransmission rate among nodes, the current reliability of 
nodes, etc. 

Testbed Status, Uses, and Future Directions 

The testbed, which has been operational since .January 
of 1982, has been a much larger system building effort, than 
was originally anticipa.tetl at the onset, of the project. The 
current size of the tcstbcd, which is written in U,ISP (Corkill 
1980) rumling under VMS, including support facilities is ap- 
proximately 500K bytes of compiled lisp code Over the three 
year development period, between fifteen and twenty man- 
years of effort have gone into the const,ruction of the t&bed 

This extensive construction effort has come in part from 
the large number of major design iterations. The basic con- 
cept of the test,bed has stayed i&act through thcsc iterations 
but significant modifications to all aspects of the testbed 
have been required as we came to understand how to bcttcr 
paramctcrize the various components. 

It should also bc mentioned that, even though thr task 
knowledge was simplified, considcrablc efrort was still rc- 
quired to get the planner and knowlrdgc sources to work 
effectively together The testbed uses a very general mech- 
anism for knowledge source interaction, and a numbor of 
interact,ion patterns t,hat would not occur in a centralized 
system do occur in distributed networks. 

The saving grace of all t,hese redesign efforts was that it 
lead us to a bett,er understanding of how knowledge-based AT 
systems and, more specifically, knowledge-based distributed 
problem solving systems opera.te In short, designing s 
knowledge-based AI system remains an art and requires con- 
siderable iteration. 

A key concern that, WC still havt about t,hc tcstbed 
design, which cannot be answered without extensive use of 
t,he testbed, is the range of issues that can be effectively 
explored in the testbed. So f ar, only one extensive set, of 
experiments have been run in the testbed. These experi- 
mcnts emphasized the use of the testbed to explore the effect,s 
of different network problem solving strategies (Corkill 81 
Lesser, 1983b). Characteristics that wcrc varied included: 

l whether communication is voluntary (a node trans- 
mit,s hyl)otlleses at its pleasure), requested (a node 
transmits hypotheses only when that informatiorl is 
requested by another node), or n mzzed initiatzve cw111- 
hination of voluntary and recll~est,c4 hypothcscs (a 
node volunteers only its highest raLed hypotheses 
and awaits requests before t,ransmitting any othcl 
hypoi,heses); 

l whet,her a nodr is self-directed or externa&darected in 
its act,ivities (or a corribinat,iorl of bot,li); 
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Figure 6 Alternative Distrihuted Problem Solvirlg Stratcgics 

l whether hypotheses, goals, or l~oth hypotheses and 
goals are used for internode coordination 

The organizational strategies were evaluated using two 
different network architectures: a laterally-organized, foiir- 
node network with broadcast communication ammg nodes 

and a hierarchica.lly-organized, five-node network in which 
the fifth node acts as an integrating node (Figure 8). In 
both architectures, thr network is st,ruct,ured so that the 
nodes cooperate by exchanging partial and tentative high- 
level l~~ypothcscs. 

Although these experiments did not explore all the 
parameters in the testbed, they do provide evidence of 
the utility and Mcxibility of the testbed as a research tool 
The different, network problem solving strategies and en- 
vironmental configurations were easily expressed, and inter- 
esting empirical results indicating the performance of the 
different strategies were obtained. The most interesting 
of these results wcrc how different organizational and con- 
t,rol strategies performed in a noisy input environment that 
created the potential for the exchange of distracting infor- 
mation among the nodes. 

As part, of these initial experiments, we had planned 
to explore larger node configurations (with IO to 20 nodes). 
However, only a few of these larger test cases were run Re- 
tween 3 and 5 hours of CPU time wrrc required to simulate 
one of these larger experiments The efficiency of the simula- 
tion is crucial to exploring large node configurations. We arc 

now beginning the process of selectively t,uning t,hc testbed 
but, do not have a feel for the potential spcctlup WC arc also 
beginning work on modifying the t.est,l)cd to ruri as a parallel 
simulation syskm on a local area network of VAX 11/75Os 9 

III setting up, larger and more complex configurations, 
a large number of intcrrclated parameters needed to he 
specified. This specification process was both time consun- 
ing and error-prone. To remedy this problem, we are now 
building additional graphical support tools to allow an cx- 

periment,er to design and view the net,work configuration 
Additionally, we are developing tools allowing complex ~lotle 

topologies to be specified in a generic way, inclepcndcnt of 
any specific number of nodes (Corkill 82 Pattison, 1983~) 

We now firmly bclievc that no matter how flexible and 
gcncral a research tool is, if it is not convenient to use, ot 

if the empirical results arc not easy to understand, only a 
small subset of its capabilities will be exploited. 

Conclusion 

In t,his article we have described the area of tlistributcd 
problrm solving and discussed some of the important, issues 
that must be addressed. We also introduced the Functionally 
Accurat)e, Cooperative approach with its emphasis on dealing 
with uncertain data and control information as an integral 
part of network problem solving 

The IN& for an empirical investigation of distributed 
problem solving was discussed, nspccially with regard 60 
network coordination. Such an investigation requires a 
flexible experimental tool. The Distributed Vehicle Monitor- 
ing Testbed was presented as an example of such a tool. 

The testbed facilitates the exploration of the following 
factors in distributed problem solving: 

node-node and node-sensor configurat,ions; 
mixes of data- and goal-dir~ct,erl control in t,hc sys- 
tem; 
distril)utions of Imcertainty and error in the input 
data; 
distributions ot’ problc~u solving capability in t.hc sys- 
tem; 

types of communication politics used; 

commnnicat,ion channel characterist,ics; 
the problem solving and communication responsibil- 
ities of each node; and 

the authority relationships among nodes 
The multiple dimensions of independent control and the 

det,ailed level of simulation in the I,estbed provide what we 
fe’Fc1 is a very useful environment for experimentation. 

“We had initially hoped to solve the effw.isncy problem t.hrough t.he USC 
of’ two different testbeds, one witt,en in I,IsP as t,he devrlopmcnt sys- 
tem and the other in PASCAT, RS the production systenl Linfa tunately, 
with the cxtensivr design itorations that occrlrrcd during the building 
of’ the test.hed, it was impossible to keep the PASCAL inlplrmrntatiorl 
cun ent and cvcnt,ually it was dropped 



There is a need for more extensive experimentation with 

AI systems All too often getting a large knowledge-based 
AT system to work at all is the major goal. Extensive ex- 
perimentation with the system over a range of conditions is 
rarely done. The tcstbed is one of the few exceptions In this 
presentation we have emphasized what makes the testbed a 
flexible experimental tool Many of t,hese techniques are ap- 
propriate for any large knowledge-based AI system. 
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