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Human-Machine Cognitive Systems 

A dvances in tool building have focused attention on 
the decision-making and problem-solving activities in 

work environments. First, through increased control au- 
tomation, the human role has shifted from an emphasis on 
the perceptual-motor skills needed for manual control to 
the cognitive skills (e.g., monitoring, planning, fault man- 
agement) needed for supervisory activities. Second, de- 
velopments in computational technologies (z.e., heuristic 
programming techniques) have greatly increased the po- 
tential for automating decisions and have resulted in envi- 
ronments where humans interact with another, artificial, 
cognitive system. The result is the need for and a grow- 
ing interest in cognitive technologies-that is, techniques 
and concepts (a) to identify the decision-making/problem- 
solving requirements in some domain; (b) to improve 
decision-making/problem-solving performance; and (c) to 
develop joint human-machine cognitive systems. 

A cognitive system is goal directed; it uses knowledge 
about itself and its environment to monitor, plan, and 
modify its actions in the pursuit of goals; it is both data- 
and concept-driven. People are obviously cognitive sys- 
tems. Advances in computational technology have greatly 
expanded the potential for the support of human cogni- 
tive activities and for the development of artificial cogni- 
tive systems--i.e., systems that perform tasks normally 
associated with human cognition. However, these devel- 
opments also create new challenges: 

l What is effective decision support? 

l How can one allocate decision tasks between hu- 
man and machine? 

l What is useful advice? 

l What is an effective combination of human and 
artificial cognitive systems? 

In other words, there can be a third type of cognitive sys- 
tem: A single, integrated system composed of both hu- 
man and artificial cognitive systems (Hollnagel & Woods, 
1983). Implicitly or explicitly, applying computational 
technology is an exercise in the design of a joint cogni- 
tive system, and this article examines the implications of 

Abstract 
Developments in computational technology have focused 

on tool building-how to build better performing machines. 
But tool use involves more. The key to the effective applica- 
tion of computational technology is to conceive, model, design, 
and evaluate the joint human-machine cognitive system. Like 
Gestalt principles in perception, a decision system is not merely 
the sum of its parts, human and machine. The configuration or 
organization of the human and machine components is a critical 
determinant of the performance of the system as a whole. Ef- 
fective decision support then requires that computational tech- 
nology aid the user in the process of reaching a decision, and 
not simply make or recommend solutions. As a result, there 
is need for and a growing interest in cognitive technologies as 
a necessary complement to computational technologies for re- 
search on and the design of decision support systems. 

This article explores the implications of one type of cog- 
nitive technology, techniques, and concepts to develop joint 
human-machine cognitive systems, for the application of com- 
putational technology by examining the joint cognitive sys- 
tem implicit in a hypothetical computer consultant that out- 
puts some form of problem solution. This analysis reveals 
some of the problems that can occur in cognitive system 
design-e.g., machine control of the interaction, the danger of a 
responsibility-authority double-bind, and the potentially diffi- 
cult and unsupported task of filtering poor machine solutions. 
The result is a challenge for applied cognitive psychology to 
provide models, data, and techniques to help designers build 
an effective combination between the human and machine ele- 
ments of a joint cognitive system. 
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this perspective for research on and the design of decision 
support systems. 

A Hypothetical Computer Consultant’ 

To begin our exploration of the joint cognitive system 
perspective on decision support, consider an alternative 
paradigm for the use of decision tools. In this paradigm, 
the primary design focus is to use computational technol- 
ogy to produce a stand-alone machine expert that offers 
some form of problem solution (e.g., a recommended so- 
lution or solution categories ranked by some form of like- 
lihood). The “technical” performance of this system is 
judged by the criterion of whether the solutions offered 
are “usually” correct (e.g., Yu et al., 1979). This paradigm 
emphasizes tool building over tool use and questions about 
how to interface human to machine are therefore secondary 
to the main design task of developing a machine that usu- 
ally produces correct decisions.’ 

A typical encounter with a hypothetical system devel- 
oped in this fashion consists of the following elements: The 
user initiates a session; the machine controls data gather- 
ing; the machine offers a solution; the user may ask for an 
“explanation” if some capability exists (where explanation 
usually consists of providing the user with a justification 
for the machine’s solution); and the user accepts (acts on) 
or overrides the machine’s solution. 

What is the joint cognitive system architecture im- 
plicit in this hypothetical machine expert? The primary 
focus is to apply computational technology to develop a 
machine expert. In practice, putting the machine to work 
requires communication with the environment-data must 
be gathered and decisions implemented. Rather than au- 
tomate these activities, system designers typically leave 
them for the human user (Figure 1). Thus, interface de- 
sign for the hypothetical consultant is not so much how 
to interface the machine to the user, but rather, how to 
use the human as an interface between the machine and 
its environment. This emphasis results in a user interface 
design process that focuses on features to aid the user’s 
role as data gatherer (e.g., Mulsant & Servan-Schreiber, 
1983) and on features to help the user accept the ma- 
chine’s solution. As a result, control of the interaction in 
this type of joint system resides with the machine. How- 
ever, human factors research in person-machine systems 
has established that a machine locus of control can have 
strong negative effects on user and total system perfor- 
mance (see, for example, Smith, 1981; Hoogovens Report, 
1976; Turner, 1984). 

A related characteristic of this paradigm is that user 
acceptance and the machine expert’s “technical” perfor- 

lWhile it is left for the reader to judge the extent to which this 
hypothetical system is representative of current AI “consultants,” 
expert systems have been built using this perspective and there is 
considerable pressure for commercial applications of AI to follow this 
path 
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The joint cognitive system implicit in a hypothetical computer con- 
sultant where design focuses primarily on building a machine expert 
that outputs usually correct solutions; the human user’s role is to 
gather data and to filter any poor machine solutions. 

Figure 1. 

mance (again, in the sense of offering problem solutions 
that are usually correct) are seen as independent issues 
(e.g., Shortliffe, 1982). “Excellent decision making per- 
formance does not guarantee user acceptance” (Langlotz 
& Shortliffe, 1983). Thus, lack of user acceptance (where 
acceptance means the user adopts the machine’s solution) 
is seen as a problem in the user that must be treated by 
measures outside of the essential characteristics of the ma- 
chine expert. One proposed technique is to embed other, 
useful support capabilities in the same computer system 
that implements the machine expert, e.g., data manage- 
ment functions such as computerized data entry forms or 
standard report generation (Langlotz & Shortliffe, 1983). 
In pursuit of user acceptance of the machine’s solution, 
some designers of machine experts will go so far as to sug- 
gest that systems “provide the physician (i.e., the user) 
with the ability to report the facts he considers important 
(even if they are not used internally) (i.e., by the ma- 
chine expert)” (Mulsant & Servan-Schreiber, 1983; italics 
added). The joint cognitive system viewpoint suggests, on 

THE AI MAGAZINE 87 



the other hand, that problems with user acceptance are 
very often symptoms of an underlying deficiency (e.g., ma- 
chine control) in the “cognitive coupling” (Fitter & Sime, 
1980) between the human and machine subsystems. 

The emphasis in the hypothetical system is user ac- 
ceptance of the machine’s solution. However, since these 
systems are imperfect, output typically consists of some 
form of confidence or likelihood estimate over a set of pos- 
sible diagnoses. The user is expected to act on the ma- 
chine’s solution, but what is the machine’s solution? The 
highest likelihood category? Likelihood weighed by conse- 
quences? By some form of expectation? For real-time do- 
mains, are temporal fluctuations important? What if there 
are several high-likelihood options or no high-likelihood 
options? Choosing a solution to act on is further com- 
plicated because of the non-standard procedures that are 
typically used to compute likelihood estimates. Due to the 
method used to generate the confidence values, the likeli- 
hood data usually rests on an ordinal measurement scale. 
However, they are often represented as interval scales to 
the user. This mismatch creates the potential to mislead 
the human decision maker and to complicate his decision 
task. These examples illustrate that computing likelihood 
over limited categories underspecifies the cognitive activ- 
ities underlying diagnosis; likelihood is only one element 
of decision making under conditions of uncertainty and 
risk. Failure to recognize the nature of the human’s cogni- 
tive task can lead to error prone links in the joint system 
(but see Schum, 1980; Einhorn & Hogarth, 1984; Robinson 
& Sorkin, 1985 for treatments of how evidence supplied 
by one system should be used by a subsequent decision 
maker.) 

The hypothetical computer consultant provides some 
form of problem solution. However, it is the human prob- 
lem solver who has responsibility for the outcome. Of 
course, the person has in principle the authority to over- 
ride the machine-that is, to filter the expert machine’s 
output. This form of cognitive coupling between subsys- 
tems has several strong implications. First, does the user 
really have the authority to override machine output in 
practice? Since the user’s only practical options are to 
accept or reject system output, there is great danger of 
a responsibility/authority double-bind in which the user 
either always rejects machine output (perhaps by finding 
or creating grounds for machine unreliability) or abrogates 
his or her decision responsibility (the user may not over- 
ride the computer, regardless of circumstances, if the cost 
of an error in overriding is too high). When people refer a 
problem to a human specialist, they generally pass on both 
authority and responsibility together (e.g., Miller, 1983); 
thus, a specialist who is called in on a case typically acts 
as the primary problem solver and not as a consultant 
to another problem solver. The responsibility/authority 
double-bind has been observed with non-AI decision aids 
that provide solutions (e.g., Fitter & Sime, 1980) and with 

increases in control automation that fail to address the 
operator’s new role as supervisor of automated resources 
(e. g., Hoogovens Report, 1976). 

Second, how good are people at discriminating cor- 
rect from incorrect machine solutions, and how does dis- 
crimination performance vary with user expertise and over 
different types and depths of explanation?2 Very little is 
known about what factors affect human performance at 
filtering another decision maker’s solutions.3 What level 
of expertise is needed to recognize erroneous machine out- 
put or a situation that is beyond the capabilities of the 
machine? (Machine experts are at best only usually cor- 
rect.) Can people use syntactic cues (this output looks 
funny for this type of problem) or experience-driven asso- 
ciations (in this situation the machine usually screws up) 
to filter erroneous system output? 

A related issue is the question of loss of skill. Some 
degree of expertise would seem to be required to filter 
machine output; what factors determine if the user of 
a machine expert can develop or maintain that exper- 
tise? Learning by doing applies to cognitive as well as 
to perceptual-motor skills: 

It has to be recognized that in giving up the inter- 
play between knowledge and its regular practical 
exercise, we are departing from the only condi- 
tions we know for the successful development of 
art and science (Council for Science and Society, 
1981). 

Issues concerning the loss of cognitive skill are closely re- 
lated to the loss of skill questions that arise in control 
automation:4 How will the human acquire or maintain 
the manual (or cognitive) skill to take over or adjust con- 
trol when automation breaks down or when disturbances 
occur that are beyond the capability of the automation 
(Hoogovens Report, 1976)? Does man-in-the-control-loop 
(or decision-loop) architecture improve human fault man- 
agement performance in highly automated systems (e.g., 
Ephrath & Young, 1981; Wiener, 1985)? 

While research developers of machine experts have ac- 
cepted the need to explain offered solutions in some form 

2Human performance at filtering machine output can be modeled 
in a signal detection uaradinm (e o., Sorkin & Woods. 1985) where 
performance is a function of two parameters: A sensitivity compo- 
nent and a response criterion. The first measures the person’s ability 
to discriminate correct from incorrect proposed solutions, while the 
second measures how much evidence it takes to accept or reject a so- 
lution given the costs and benefits of the different possible outcomes. 
31 am addressing here the person’s ability to filter machine output 
after the machine expert has been developed and deployed. Typical 
current methods for constructing a machine expert are extremely 
dependent on the ability of human domain experts and knowledge 
engineers to detect and correct erroneous machine output. 
41n general, work on human performance in highly automated pro- 
cess control systems (e q., Wiener & Curry, 1980; Sheridan & Hen- 
nessy, 1984; Wiener, 1985) provides a starting point to consider po- 
tential challenges and problems in applying tools for automated de- 
cision making 
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and to some degree, there are pressures in commercial ap- 
plications which encourage the production of black box 
systems. For example, I have seen developers of commer- 
cial systems express concern about providing explanations, 
when the “explanation” consists of the rule trace that led 
to the solution, because a series of these explanations could 
constitute enough information to aid competitors in de- 
veloping or marketing comparable systems. Similarly, in 
diagnostic applications, developers sometimes dismiss ef- 
forts to provide good explanation, which might increase 
the user’s skill at diagnosis and treatment of domain fail- 
ures, because they fear that the skilled person could then 
leave and compete with the parent company. 

One plausible strategy for filtering machine solutions 
is for the user to generate his or her own problem solu- 
tion and then to compare it with the machine’s output. 
Besides the responsibility/authority double-bind problem, 
this strategy results in a redundant, as opposed to diverse, 
joint human-machine cognitive system architecture. Anal- 
ogous to equipment reliability issues, the design question 
is whether a redundant or diverse architecture will result 
in more reliable overall system performance. 

The critical question is the criterion for judging an ef- 
fective system. In the paradigm represented by the hypo- 
thetical consultant, the %ystem” is defined as the machine 
expert and “effective” means usually correct machine so- 
lutions. However, an alternative approach is to define the 
system as the combination of human and machine (the 
human-machine cognitive system) and to define effective 
to mean maximizing joint performance; the performance of 
the whole should be greater than the possible performance 
of either element alone. 

In sum, what kind of decision tool is the hypothetical 
consultant? 

One of the big problems is the tendency for the 
machine to dominate the human.. . consequently 
an experienced integrated circuit designer is forced 
to make an unfortunate choice: Let the machine 
do all the work or do all the work himself. If he 
lets the machine do it, the machine will tell him to 
keep out of things, that it is doing the whole job. 
But when the machine ends up with five wires 
undone, the engineer is supposed to fix it. He 
does not know why the program placed what it 
did or why the remainder could not be handled. 
He must rethink the entire problem from the be- 
ginning (Finegold, 1984). 

Given limited user participation in the problem solving 
process, the danger of a responsibility-authority double 
bind with support systems that offer solutions rather than 
informative counsel, the potential loss of cognitive skill and 
the potentially difficult and unsupported task of filtering 
poor machine solutions, the impoverished joint cognitive 
system implicit in the hypothetical computer consultant 

does not represent an effective paradigm for the use of de- 
cision tools, i.e., for decision aiding. As a result of the poor 
cognitive coupling, the performance of the joint system is 
not likely to exceed or may even be worse than (Robinson 
& Sorkin, 1985) the performance of the machine alone. 

Towards Joint Cognitive Systems 

Tool builders have focused, not improperly, on tool 
building-how to build better performing machines. But 
tool use involves more. The key to the effective applica- 
tion of computational technology is to conceive, model, 
design, and evaluate the joint human-machine cognitive 
system (Hollnagel & Woods, 1983). Like Gestalt princi- 
ples in perception, a decision system is not merely the 
sum of its parts, human and machine. The configuration 
or organization of the human and machine components is 
a critical determinant of the performance of the system 
as a whole (Sorkin & Woods, 1985). This means using 
computational technology to aid the user in the process of 
reaching a decision, not to make or recommend solutions. 
The challenge for applied cognitive psychology is to pro- 
vide models, data, and techniques to help designers build 
an effective configuration of human and machine elements 
within a joint cognitive system. 

Effective joint cognitive system design requires, first, a 
problem-driven, rather than technology-driven, approach. 
In a problem-driven approach, one tries to learn what 
makes for competence and/or incompetence in a domain 
and then to use this knowledge to provide tools that sup- 
port domain cognitive demands, help the human function 
more expertly, and mitigate error prone links in the joint 
cognitive system. If the problem to be solved by the 
new system is a dangerous environment, then an auto- 
mated decision system is a viable solution. If the problem 
is human inconsistency or memory lapses, then a redun- 
dant cognitive system architecture may be one appropriate 
path. It is insufficient to say, “human diagnostic perfor- 
mance (even by experts) is not as good as I would like, 
therefore I will build a machine for diagnosis.” One must 
ask what aspect of the diagnostic performance of the cur- 
rent person-machine system is the bottleneck. Studies of 
cognitive performance in work environments have shown 
person-machine performance problems such as: 

l Fixation or perseveration effects in an operator’s as- 
sessment in the state of some process (Woods, 1984; 
Norman, 1986); 

l Weaknesses in counterfactual reasoning: Would y 
have occurred if x had not? 

l Data sampling/information acquisition problems: 
Can the user find and integrate the “right” data 
for the current context and task (Woods, 1986)? 

Can machine experts that offer problem solutions 
counteract any of these problems? For example, one char- 
acteristic of fixation effects is early termination of the eval- 
uation of alternative hypotheses; therefore, a good joint 
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cognitive system should support a broader exploration of 
solution possibilities. Would a machine expert offering 
its own solution broaden the evaluation of alternatives or 
narrow evaluation and exacerbate fixation problems? If 
failures of attention are the underlying problem, then a 
decision aid that helps the human problem solver to fo- 
cus in on the relevant data set for the current context is 
the design goal (Woods, 1985); computational technology 
supplies the means to build real systems that instantiate 
the decision aiding techniques to achieve this goal. When 
tools dominate, rather than constrain, the joint cognitive 
system design, the designer runs a strong risk of commit- 
ting the error of the third kind: Solving the wrong problem 
(Mitroff, 1974). 

If joint cognitive system design is to be effective, we 
need models and data that describe the critical factors for 
overall system performance. Sorkin and Woods (1985) and 
Robinson and Sorkin (1985) are examples (c,f. also, Schum, 
1980) of an analysis of joint cognitive systems modelled as 
two decision makers in series. The first stage consists of 
automated subsystems that make decisions about the state 
of the underlying process. When alerted by the first stage 
system, the subsequent human decision maker uses evi- 
dence provided by the automated subsystems and his or 
her own analysis of input data to confirm or disconfirm the 
decision made by the automated monitors and to decide on 
further action. These analyses show, first, that the perfor- 
mance of the joint system can be significantly enhanced or 
degraded relative to the performance of the machine ele- 
ment alone. Overall performance depends on interactions 
between the characteristics of the subsystems, primarily 
the response criterion of the automated subsystem and 
the user’s workload and monitoring strategy. Second, the 
value of the output of the first stage is better thought of as 
information, in the sense of evidence or testimony, to be 
used by the person to aid his or her decision, rather than as 
an offered solution to be accepted or rejected. Third, the 
inferential value of the information provided to the human 
decision maker is highly sensitive to the characteristics of 
the joint system. For example, the value of the evidence 
provided by the automated subsystem degrades rapidly if 
it exhibits a bias for or against possible events, even if it 
is a sensitive detector alone. 

Empirical studies of human-human advisory interac- 
tions are a another source of data on what is good advice. 
Alty and Coombs (1980) and Coombs and Alty (1980) 
found that unsatisfactory human-human advisory encoun- 
ters were strongly controlled by the advisor. The advisor 
asked the user to supply some specific information, mulled 
over the situation, and offered a solution with little feed- 
back about how the problem was solved. While a problem 
was usually solved, it was often some proximal form of the 
user’s real problem (i.e., the advisor was guilty of a form 
of solving the wrong problem: Solving a proximal case of 
the user’s fundamental or distal problem). The advisor 

provided little help in problem definition. There is a strik- 
ing parallel between these characteristics of unsatisfactory 
human-human advisory encounters and the characteristics 
of the joint cognitive system implicit in the hypothetical 
computer consultant analyzed earlier. 

By contrast, in more successful advisory encounters a 
partial expert (an experienced computer user with a do- 
main task to be accomplished) consulted a specialist (an 
expert in the local computer system). Control of the in- 
teraction was shared in the process of identifying the im- 
portant facts and using them to better define the prob- 
lem. In this process each participant stepped outside of 
his own domain to help develop a better understanding of 
t,he problem and, as a consequence, appropriate solution 
methods. 

These studies (see also, Pollack et al., 1982) reveal 
that good advice is more than recommending a solution; it 
helps the user develop or debug a plan of action to achieve 
his or her goals (Jackson & Lefrere, 1984). Good advisory 
interactions aid problem formulation, and plan generation 
(especially with regard to obstacles, side effects, interac- 
tions, and trade-offs), help determine the right questions 
to ask, and help find or evaluate possible answers. A good 
advisor must be able to do more than provide a solution 
and some description or justification of the solution pro- 
cess; he or she must be able to participate in the prob- 
lem solving process, to answer questions like: What would 
happen if x? Are there side effects to x? How do x and y 
interact? What produces x? How to prevent x? What are 
the preconditions (requirements) and postconditions for x 
(given x, what consequences must be handled)? 

Studies of advisory interactions reveal another impor- 
tant characteristic of joint cognitive systems: The relation- 
ship between the kinds of skills and knowledge represented 
in the human and the kinds represented in the machine 
(as opposed to relative skill levels). The assumption of 
essential user incompetence inherent in the hypothetical 
system described earlier is almost always unwarranted.5 
Instead, the human and machine elements contain partial 
and overlapping expertise that, if integrated, can result in 
better joint system performance than is possible by either 
element alone. 

Today, no one expert in any field can keep up with 
the amount or rate of change of information. The result of 
this fragmentation of knowledge is the generalist-specialist 
problem. Most real world problems require the integration 
of different specialists each of whom contributes a unique 
point of view (Hawkins, 1983; Coombs & Alty, 1984), and 
one aspect of expertise is the ability to integrate specialist 

5This assumption is another negative by-product of the emphasis on 
producing a machine expert that usually outputs correct solutions, 
where “usually” means that the machine alone outputs a correct 
solution more often than the expected human practitioners alone, 
and Hollnagel, 1986 examines the implications of this emphasis for 
the evaluation of decision aids. 
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knowledge in some real problem context. As a result, the 
designer of a joint cognitive system must address the ques- 
tion of what is or what should be the relationship b:etween 
machine and human expertise in a given domain: Is the 
person a generalist who manages and integrates input from 
various machine implementations of specialist knowledge? 
Is the human one specialist interacting with the knowledge 
of other specialists to deal with a problem at the junction 
of two fields? Effective interactions between these kinds of 
partial, overlapping experts require that knowledge from 
different viewpoints be integrated in the decision process, 
including problem formulation and plan evaluation. 

Researchers are beginning to develop decision support 
systems that embody these characteristics of useful, in- 
formative advice. One path is to build machine advisors 
that critique the human problem solver’s plan (Coombs 
& Alty, 1984; Langlotz & Shortliffe, 1983; Miller, 1983). 
A second path towards joint cognitive systems is to build 
direct manipulation (Hutchins, Hollan, & Norman, 1985) 
or graphic knowledge (Woods, 1986) systems. Both paths 
use explicit knowledge about the cognitive demand char- 
acteristics of a domain, about the state of the problem 
solving encounter, and about the user’s plans/goals to pro- 
vide useful advice. The former incorporates this knowl- 
edge in an explicit machine advisor; the latter embeds this 
knowledge in a graphic, conceptual looking glass through 
which the user views the domain. Rather than offering 
solutions, systems built from either of these approaches 
support user problem formulation and plan evaluation by 
providing informative counsel such as warnings of prereq- 
uisite violations, reminders of potentially relevant infor- 
mation, reports of potential consequences or side effects, 
and reminders of a plans’ postconditions. 

Implications 

Fundamentally, the difference between the paradigm for 
decision support represented by the hypothetical consul- 
tant and the joint cognitive system paradigm is a difference 
in the answer to the question “what is a good consultant.” 
One operational definition of a consultant (operational in 
the sense that systems purported to be consultants are 
built in this fashion) is some one (thing) called in to solve 
a problem for another, on the assumption that the problem 
was beyond the skill of the original person. Given this def- 
inition, the important issues for building decision aids is to 
build better automated problem solvers and to get people 
to call on these automated problem solvers (the acceptance 
problem). The joint cognitive system perspective, on the 
other hand, defines a consultant as a resource or source of 
information for the problem solver. The human problem 
solver is in charge; the consultant functions more as a staff 
member. As a result, the joint cognitive system viewpoint 
stresses the need to use computational technology to aid 
the user in the process of solving his or her problem. The 
human’s role is to achieve total system performance objec- 

tives as a manager of knowledge resources that can vary 
in “intelligence” or power (Sheridan & Hennessy, 1984). 

To build effective human-machine cognitive systems, 
we need techniques and concepts to identify the decision- 
making/problem-solving requirements in some domain 
and to ‘improve cognitive performance. The analysis of a 
hypothetical computer consultant from the joint cognitive 
system viewpoint reveals some of the kinds of problem- 
solving errors that can occur when one attempts to build a 
problem-solving system (e.g., pseudo-consultants, overuse 
of redundant as opposed to diverse human-machine cogni- 
tive system architectures, design for novice human/expert 
machine interaction when the interaction is actually be- 
tween overlapping partial experts). Research to provide 
designers with a cognitive technology is underway (e.g., 
Card, Moran & Newell, 1983; Rasmussen, Leplat & Dun- 
can, 1986; Norman & Draper, 1985; Hollnagel, Mancini 
& Woods, 1986), but this cognitive technology is more 
than one ingredient for the development of “intelligent” 
machines. It is a valuable entity in its own right and can 
support many avenues for performance improvements in- 
cluding decision training, interface design, human relia- 
bility assessment, non-AI decision aids, and information 
management. 
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