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Artificial intelligence (AI), the discipline we all call our 
intellectual home, is suddenly having a rather large 
cultural moment. It is hard to turn anywhere without 

running into mentions of AI technology and hype about its 
expected positive and negative societal impacts. AI has been 
compared with fire and electricity in its overall importance 
to humanity, and commercial interest in the AI technologies 
has sky-rocketed. Universities — even high schools — are 
rushing to start new degree programs or colleges dedicated to 
AI. Civil society organizations are scrambling to understand 
the impact of AI technology on humanity, and governments 
are competing to encourage or regulate AI research and 
deployment.

There is considerable hand-wringing by pundits of all 
stripes on whether, in the future, AI agents will get along 
with us or turn on us. Much is being written about the need 

 From its inception, artificial intelli-
gence (AI) has had a rather ambivalent 
relationship to humans — swinging 
between their augmentation and their 
replacement. Now, as AI technologies 
enter our everyday lives at an ever- 
increasing pace, there is a greater need 
for AI systems to work synergistically 
with humans. To do this effectively, 
AI systems must pay more attention 
to aspects of intelligence that help 
humans work with each other — 
including social intelligence. I will 
discuss the research challenges in 
designing such human-aware AI sys-
tems, including modeling the mental 
states of humans-in-the-loop and rec-
ognizing their desires and intentions, 
providing proactive support, exhibit-
ing explicable behavior, giving cogent 
explanations on demand, and engen-
dering trust. I will survey the progress 
made so far on these challenges, and 
highlight some promising directions. 
I will also touch on the additional ethi-
cal quandaries that such systems pose. 
I will end by arguing that the quest for 
human-aware AI systems broadens 
the scope of AI enterprise; necessitates 
and facilitates true interdisciplinary 
collaborations; and can go a long way 
toward increasing public acceptance of 
AI technologies.
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to make AI technologies safe and delay the dooms-
day. I believe that, as AI researchers, we are not (and 
cannot be) passive observers. It is our responsibility 
to design agents that can and will get along with us 
(figure 1). Making such human-aware AI agents, how-
ever, poses several foundational research challenges 
that go beyond simply adding user interfaces post 
facto. I will argue that addressing these challenges 
broadens the scope of AI in fundamental ways.

The Need for  
Human-Aware AI Systems

My primary aim in this article is to call for an increased 
focus on human-aware AI systems — goal-directed 
autonomous systems that are capable of effec-
tively interacting, collaborating, and teaming with 
humans.1 Although developing such systems seems 
like a rather self-evidently fruitful enterprise, and 
popular imaginations of AI, dating back to Arthur C. 
Clarke’s HAL 9000, almost always assume we already 
do have human-aware AI systems technology, little 
of the actual energies of the AI research community 
have gone in this direction.

From its inception, humans have had a rather 
ambivalent relationship with AI — swinging between 
their augmentation and their replacement. Most 
high-profile achievements of AI have either been 
far away from humans — think of the rovers Spirit 
and Opportunity exploring Mars; or in a decidedly 

adversarial stance with humans, chess-playing pro-
grams such as IBM’s Deep Blue and DeepMind’s 
AlphaGo Zero, or Carnegie Mellon University’s poker- 
playing program, Libratus. Research into effective 
ways of making AI systems interact, team, and col-
laborate with humans has received significantly less 
attention. It is perhaps no wonder that many lay 
people have fears about AI technology!

This state of affairs is a bit puzzling, given the rich 
history of early connections between AI and psychol-
ogy. Part of the initial reluctance to work on these 
issues had to do with the worry that focusing on 
AI systems working with humans might somehow 
dilute the grand goals of the AI enterprise, and might 
even lead to temptations of cheating, with most of 
the intelligent work being done by the humans in the 
loop. After all, prestidigitation has been a concern 
since the 18th century’s Mechanical Turk. Indeed, 
much of the early work on human-in-the-loop AI 
systems mostly focused on using humans as a crutch 
for making up for the limitations of the AI systems 
(Allen 1994). In other words, early AI had humans 
be AI-aware (rather than AI be human-aware). Now, 
as AI systems are maturing with increasing capabili-
ties, the concerns about them depending on humans 
as crutches are less severe. I would also argue that 
focus on humans in the loop doesn’t dilute the goals 
of AI enterprise, but in fact broadens them in mul-
tiple ways. After all, evolutionary theories tell us 
that humans may have developed the brains they 

Figure 1. We Should Build a Future where AI Systems Can Be Our Quotidian Partners.
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Figure 2. Architecture of an Intelligent Agent that Takes Human Mental Models into Account.

All portions in yellow are additions to the standard agent architecture, which are a result of the agent being human-aware. R

h
M  is the men-

tal model the human has of the AI agent’s goals and capabilities, and H

r
M  is the (mental) model the AI agent has of the human’s goal and 

capabilities (see “Mental Models in Human-Aware AI”).

have not so much to run away from the lions of the 
savanna or the tigers of Bengal, but, instead, to 
effectively cooperate and compete with each other. 
Psychological tests such as the Sally Anne Test 
(Wimmer and Perner 1983) demonstrate the impor-
tance of such social cognitive abilities in the devel-
opment of collaborative abilities in children.

Some branches of AI, aimed at specific human- 
centric applications such as intelligent tutoring sys-
tems (VanLehn 2006) and social robotics (Breazeal 
2004, 2003; Scassellati 2002), did focus on the chal-
lenges of human-aware AI systems for a long time. It 
is crucial to note, however, that human-aware AI 
systems are needed in a much larger class of quo-
tidian applications beyond those. These include 
human-aware AI assistants for many applications 
where humans continue to be at the steering wheel, 
but will need naturalistic assistance from AI sys-
tems — akin to what they can expect from a smart 

human secretary. Increasingly, as AI systems become 
commonplace, human-AI interaction will be the dom-
inant form of human–computer interaction (Amershi 
et al. 2019).

For all of these reasons and more, human-aware AI 
has started coming to the forefront of AI research of 
late. Recent road maps for AI research, including the 
2016 JASON report2 and the 2016 White House OSTP 
report,3 emphasize the need for research in human-
aware AI systems. The 2019 White House list of 
strategic research and development priorities for AI 
places developing effective methods for human-AI 
collaboration at the top of it list.4 Human-aware 
AI was the special theme for the 2016 International 
Joint Conference on AI (with the tagline “Why 
intentionally design a dystopian future and spend 
time being paranoid about it?”); it has been a special 
track at the Association for the Advancement of Arti-
ficial Intelligence (AAAI) since 2018.
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How Do We Make  
AI Agents Human-Aware?

When two humans collaborate to solve a task, both 
of them will develop approximate models of the goals 
and capabilities of each other (the so-called theory 
of mind), and use them to support fluid team per-
formance. AI agents interacting with humans — be 
they embodied or virtual — will also need to take this 
implicit mental modeling into account. This certainly 
poses several research challenges. Indeed, it can be 
argued that acquiring and reasoning with such mod-
els changes almost every aspect of the architecture of 
an intelligent agent. As an illustration, consider the 
architecture of an intelligent agent that takes human 
mental models into account (see figure 2). Clearly 
most parts of the agent architecture — including state 
estimation, estimation of the evolution of the world, 
projection of its own actions, and the task of using 
all this knowledge to decide what course of action 
the agent should take — are all critically impacted by 
the need to take human mental models into account. 
This in turn gives rise to many fundamental research 
challenges. In a 2017 article (Chakraborti, Kambham-
pati, Scheutz, and Zhang 2017), we attempted to pro-
vide a survey of these challenges. Rather than list the 
challenges again here, in the remainder of this article, 
I will use the ongoing work in our laboratory to illus-
trate some of these challenges as well as our current 
attempts to address them.5 Our work has focused on 
the challenges of human-aware AI in the context 
of human–robot interaction scenarios (Chakraborti, 

Sreedharan, Kulkarni, and Kambhampati 2018), as 
well as human decision support scenarios (Sengupta 
et al. 2017). Figure 3 shows some of the test beds and 
microworlds we have used in our ongoing work.

Mental Models in Human-Aware AI
In our ongoing research, we address the following cen-
tral question in designing human-aware AI systems:  
What does it take for an AI agent to show explaina-
ble behavior in the presence of humans? Broadly put, 
our answer is this: To synthesize explainable behav-
ior, AI agents need to go beyond planning with their 
own models of the world, and take into account the 
mental model of the human in the loop. The mental 
model here is not just the goals and capabilities of 
the human in the loop, but includes the human’s 
model of the AI agent’s goals and capabilities.

Let MR and MH correspond to the actual goal or capa-
bility models of the AI agent and human. To support 
collaboration, the AI agent needs an approximation of 
MH, which we will call it H

r
Mɶ , to take into account the 

goals and capabilities of the human. The AI agent also 
needs to recognize that the human will have a model of  
its goals/capabilities R

h
M , and needs an approxima-

tion of this, denoted R

h
Mɶ . All phases of the sense– 

plan–act cycle of an intelligent agent will have to change 
appropriately to track the impact on these models  
(figure 2). Of particular interest to us in this article is the 
fact that synthesizing explainable behavior becomes a 
challenge of supporting planning in the context of 
these multiple models, as illustrated in figure 4.
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Figure 3. Test Beds Developed to Study the Dynamics of Trust and Teamwork  
between Autonomous Agents and Their Human Teammates.
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In the following subsections, we will look at some 
specific issues and capabilities provided by such  
human-aware AI agents. A note on the model rep-
resentation: In much of our work, we have used 

relational precondition-effect models. We believe, 
however, that our frameworks can be readily adapted 
to other model representations (for example, see 
Sreedharan, Olmo, Mishra, and Kambhampati, 2019).
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Figure 4. Use of Different Mental Models in Synthesizing Explainable Behavior.

(Left) The AI system can use its estimation of human’s mental model, H

r
M , to take into account the goals and capabilities of the human, 

thus providing appropriate help to them. (Right) The AI system can use its estimation of a human’s mental model of its capabilities R

h
M  to 

exhibit explicable behavior and provide explanations when needed.
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Figure 5. Computing Explanations as Model Reconciliation Involves a Search in the Space of the Models.

Here the AI agent’s model MR is on the right end, and the human’s model of the AI agent’s capabilities, R

h
M , is on the left. The search 

transitions correspond to model changes (for planning models, these might be addition or deletion of preconditions and effects). As is 
discussed in Chakraborti et al. (2017a), the explanation process involves the AI agent searching for the minimal set of changes to reconcile 
the human’s model to the actual model of the AI agent in the context of the current problem.
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Proactive Help
Left to itself, the AI agent will use MR to synthesize 
its behavior. When the agent has access to H

r
Mɶ , we 

show how it can use that model to plan behaviors 
that proactively help the human user — either by 
helping them complete their goals (Chakraborti  
et al. 2015) or avoiding resource contention with 
them (Chakraborti, Zhang, Smith, and Kambhampati 
2016).

Explicability
When the agent has access to R

h
Mɶ  it can use that 

model to ensure that its behavior is explainable. We 
start by looking at generation of explicable behav-
ior, which requires the AI agent to not only con-
sider the constraints of its model MR, but also ensure 
that its behavior is in line with what is expected 
by the human. We can formalize this as finding a 
plan π that trades off the optimality with respect 
to MR and distance from the plan π′ that would be 

expected according to R

h
Mɶ . This optimization can 

be done either in a model-based fashion, where the 
distances between π and π′ are explicitly estimated 
(Kulkarni, Zha et al. 2019), or in a model-free fash-
ion, where the distance is indirectly estimated with 
the help of a learned labeling function that evalu-
ates how far π is from the expected plan or behav-
ior (Zhang et al. 2017). Our notion of explicability 
here has interesting relations to other notions of 
interpretable robot behavior considered in AI and 
robotics communities; we provide a critical compar-
ison of this landscape in the article by Chakraborti, 
Kulkarni, et al. (2019).

Explanation
In some cases, R

h
Mɶ  might be so different from MR that 

it will be too costly or infeasible for the AI agent to 
conform to those expectations. In such cases, the 
agent needs to provide an explanation to the human 
(with the aim of making its behavior more expli-
cable). We view explanation as a process of model 
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Figure 6. A Simplified Urban Search and Rescue Scenario Where Human and AI Agents Collaborate.
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reconciliation, specifically the process of helping the 
human bring R

h
M  closer to MR. While a trivial way 

to accomplish this is to send the whole of MR as the 

explanation, in most realistic tasks, this will be both 
costly for the AI agent to communicate, and more 
importantly, for the human agent to comprehend. 

Figure 7. The Explicable Choice.

In the case of explicable behavior, the AI agent behaves in the way the human commander expects it to, based on the commander’s model 
R

h
M . This can be costly (and sometimes even infeasible) for the AI agent — as it is here, for example, where the robot has to remove the 
obstacle and clear the path so it can navigate it.
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Instead, the explanation should focus on minimal 
changes ε to R

h
M , such that the robot behavior π is 

explicable with respect to R

h
M  + ε, thus in essence mak-

ing the behavior interpretable to the human in light 
of the explanation. We show, in Chakraborti, Sreedha-
ran, Zhang, and Kambhampati (2017), that computing 
such explanations can be cast as a meta search in the 
space of models spanning MR and R

h
Mɶ  (which is the AI 

agent’s approximation of R

h
M ); see figure 5. We also 

provide methods to make this search more efficient, 
and discuss a spectrum of explanations with differing 
properties that can all be computed in this framework.

Example
To illustrate the ideas of explicability and explanation 
in a concrete scenario, consider a simplified urban 
search-and-rescue scenario depicted in figure 6. Here 
the human is in a commander’s role, and is not at the 
scene of the search and rescue. The robot (AI agent) — 
which is at the scene — collaborates with the human 
to search for the injured. Both agents start with the 
same map of the environment. However, as the robot 
explores the environment, it might find that some of 

the pathways are blocked because of fallen debris. In 
the example here, the robot realizes that the shortest 
path — as expected by the human — is blocked (see 
the black obstacle on the left in figure 7). At this point, 
the robot has two choices. It can be explicable — by 
going through the path that the human expects. This 
will, however, involve the robot clearing the path by 
removing the obstacle (see figure 7, right side). Alter-
nately, it can take the path that is optimal to it given 
the new map. In this case, the robot’s explanation (to 
the possibly perplexed) human commander involves 
communicating the salient differences between R

h
M  

and MR (see the message on the top left in figure 7).

Balancing Explicability and Explanation
While the foregoing presented showing an explica-
ble behavior and giving an explanation as two dif-
ferent ways of exhibiting explainable behavior, it 
is possible to balance the tradeoffs between them. 
In particular, given a scenario where π* would have 
been the plan that is optimal with respect to MR, 
the AI agent can choose to go with a costlier plan πɶ  
(where πɶ  is still not explicable with respect to R

h
M ), 

Figure 8. The Optimal Choice.

When explicable behavior is too costly or infeasible, the AI agent can take the path that is optimal to it (given that the original shortest 
path is blocked), and provide an explanation. The explanation involves communicating the model differences between R

h
M  and MR. For 

our case, this is just communicating that the shortest path is blocked (see the message at the top left).
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Starting from fully causal specifications (for example, the Planning Domain Description Language) on one end to correlational or shallow 
models on the other.

Figure 10. Facilitation Assessment of Human Affective States.

Assessment of human affective states can be facilitated with brain–computer interface technologies (such as the Emotive helmet used here) 
that can supplement the normal natural communication modalities.

and provide an explanation ε′ such that πɶ  is explica-
ble with respect to R

h
M  + ε′ (figure 8). In Chakraborti, 

Sreedharan, and Kambhampati (2018), we show how 
we can synthesize behaviors that have this tradeoff.

Model Acquisition
While we focused on the question of reasoning with 
multiple models to synthesize explainable behav-
ior, a closely related question is that of acquiring the 

models. In some cases, such as search-and-rescue sce-
narios, the human and AI agent may well start with 
the same shared model of the task. Here the AI agent 
can assume this as the default mental model. In other 
cases, the AI agent may have an incomplete model 
of the human; in Sreedharan, Chakraborti, and  
Kambhampati (2018), we provide an approach to han-
dle the incomplete model, viewing it as a union of com-
plete models. More generally, the AI agent may have 
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Figure 11. The AI Agent Can Project Its Own Intentions to the Human with the Help  
of Augmented Reality Technologies such as the Microsoft HoloLens.

to learn the model from the past traces of interaction 
with the human. Here too, the agent might get by with 
a spectrum of potential models — starting from fully 
causal specifications (for example, the Planning Domain 
Description Language) on one end to correlational or 
shallow models on the other (see figure 9). In two 
articles (Tian, Zhuo, and Kambhampati 2016; Zha, Li, 
Gopalakrishnan, and Kambhampati 2018), we discuss 
some efficient approaches for learning shallow models.

Communicating with Humans
Much of our work focuses on the mechanics of syn-
thesizing explainable behavior by assuming the avail-
ability of the human mental models. A closely related 
problem is sensing the affective states of human 
in the loop, and communicating the AI agent’s own 
intentions to the human. This communication can be 
done in multiple natural modalities including speech 
and language and gesture recognition (Cantrell 
et al. 2012). The human-AI communication can 
also be supported with the recent technologies such 
as augmented reality and brain–computer interfaces. 
Some of our own work looked at the challenges and 

opportunities provided by these technologies for 
effective collaboration. Figure 10 shows how off-the-
shelf brain–computer interfaces supplement natural 
communication modalities in assessing human affec-
tive states. Figure 11 illustrates how the agent can pro-
ject its intentions with the help of augmented reality 
technologies such as the Microsoft HoloLens (which 
projects the agent’s intentions into human visual 
field). In Sreedharan, Chakraborti, Muise, and Kamb-
hampati (2019), we look at the challenges involved in 
deciding when and what intentions to project.

Multiple Humans and Abstraction
The basic framework discussed previously can be gen-
eralized in multiple ways. In Sreedharan, Srivastava, 
and Kambhampati (2018), we show how we can han-
dle situations where the human and AI agent have 
models at different levels of abstraction. In Sreedharan,  
Srivastava, and Kambhampati (2018), we consider  
explanations in the context of specific foils (for exam-
ple, “Why not this other type of behavior?”) pre-
sented by the humans. In Sreedharan, Chakraborti, 
and Kambhampati (2018), we consider how the  
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AI agent can handle multiple humans — obviously 
with different models ( R

hi
M ) — in the loop, and 

develop the notions of conformant versus condi-
tional explanations.

Self-Explaining Behaviors
While the foregoing considered explanations on 
demand, it is also possible to directly synthesize self- 
explaining behaviors. In Chakraborti et al. (2018), 
we show how the agent can make its already syn-
thesized behavior more explicable by inserting 
appropriate projection actions to communicate its 
intentions, and also discuss a framework for synthe-
sizing plans that takes ease-of-intention projection 

into account during planning time. In Sreedharan, 
Chakraborti, Muise, and Kambhampati (2019), we 
show how we can synthesize self-explaining plans, 
where the plans contain epistemic actions, which aim 
to shift R

h
M , followed by domain actions that form an 

explicable behavior in the shifted model.

Human Subject Evaluations
An important disciplinary challenge posed by research 
in human-aware AI systems is that of systematic 
evaluation with human subjects. The temptation of 
a bunch of engineers to unilaterally decide what sort 
of support humans will prefer should be resisted. 
In our own work, we collaborate with researchers in 
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Figure 12. Evaluation Spirals for Human-Aware AI Systems.
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Here the participants assumed the role of external commander and evaluated the plans provided by the AI agent. They could request for 
plans as well as explanations for those plans, and rate those plans as optimal or suboptimal based on that explanations (from Chakraborti, 
Sreedharan, and Kambhampati, 2019).

human-factors, and draw on their work in human–
human teaming, as well as Wizard-of-Oz studies 
(Cooke, Gorman, Myers, and Duran 2012; McNeese, 
Demir, Cooke, and Myers 2017). We also evaluate 
the effectiveness of human-aware systems with system-
atic human-subject studies. Figure 12 displays the eval-
uation spirals. As illustrated in figure 13, we showed 
that people indeed exchange the type of explanations 
we compute, and that the need for explanations dimin-
ishes when the behavior is explicable (Chakraborti, 
Sreedharan, and Kambhampati 2019).

Explanations,  
Provenance, and Explainable AI

Explainable AI has become quite an active research 
topic in machine learning community recently. 
However, much of the work there is concerned with 
providing debugging tools for inscrutable representa-
tions (such as those learned by deep networks for per-
ceptual tasks), rather than as a means to human-AI 
collaboration. A significant part of the work in Explain-
able AI is concerned with pointing explanations — 
such as pointing the regions of an image that lead to it 

being classified as, say, an Alaskan Husky or a rare lung 
disease. Pointing explanations are, however, primi-
tive. Imagine trying to explain or justify a decision 
that was made by an AI system as part of a sequential 
decision-making scenario. Primitive pointing explana-
tions will have to point to regions of space-time tubes.6 
Another thread of research related to explanations 
is providing provenance of decision. Such provenance 
(or certificate of correctness) is often in terms of the 
AI agent’s own internal model and is not intended to 
make sense to the human in the loop. A model recon-
ciliation view, in contrast, can provide explanations in 
terms of the features of the human and robot models 
of the task. They thus hew closer to psychologic theo-
ries of explanation (for example, Lombrozo 2006).

Ethical Quandaries  
of Human-Aware AI Systems

Evolutionarily, mental modeling allowed us to both 
cooperate and compete with each other. After all, 
lying and deception are possible to a large extent 
because we can model others’ mental states! Thus 
human-aware AI systems with mental modeling 
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capabilities bring a fresh new set of ethical quan-
daries. We should also be cognizant of the fact that 
human’s anthropomorphizing tendencies are most 
pronounced for emotional/social agents. After all, 
no one who saw Shakey the Robot for the first time 
thought it could shoot hoops; yet the first people 
interacting with ELIZA7 assumed it was a real doc-
tor, and would pour their hearts out to it (prompting 
Joseph Weizenbaum to abort the project).

Although our primary focus has been on explain-
able behavior for human-AI collaboration, an under-
standing of this also helps us solve the opposite 
problem of generating behavior that is deliberately 
hard to interpret, something that could be of use 
in adversarial scenarios. We presented, in Kulkarni, 
Srivastava, and Kambhampati (2019), a framework 
for controlled observability planning, and show 
how it can be used to synthesize both explicable and 
obfuscatory behavior.

Finally, use of mental models not only helps col-
laboration but also can open the door for manipula-
tion. In principle, the framework of explanation as 
model reconciliation allows for the AI agent to tell 
white lies by bringing MR closer to a model different 
from MR. For example, a personal assistant that has 
a good mental model of you can tell you white lies 
to make you eat healthy. In two articles (Chakraborti 
and Kambhampati 2019a, 2019b), we explore the 
question of whether and when it is reasonable for AI 
agents to lie.

Epilogue
In summary, human-aware AI systems bring in a 
slew of additional research challenges (as well as a 
fresh new set of ethical ones). It may seem rather 
masochistic on our part to focus on these research 
challenges. As a character from Kurt Vonnegut’s Player 
Piano remarks:

“If only it weren’t for the people, the goddamned peo-
ple,” said Finnerty, “always getting tangled up in the 
machinery. If it weren’t for them, earth would be an 
engineer’s paradise.”

On reflection, however, it is easy to see that these 
are challenges very much worth suiting up for. After 
all, some of our best friends are human!
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Notes
1. In a way, it thus follows in the footsteps of Barbara Grosz’s 
AAAI Presidential Address (Grosz 1996), which talked about 
collaborative systems.

2. See fas.org/irp/agency/dod/jason/ai-dod.pdf

3. Available at https://www.whitehouse.gov/wp-content/
uploads/2019/06/National-AI-Research-and-Development-
Strategic-Plan-2019-Update-June

4. Available at www.whitehouse.gov/wp-content/uploads/ 
2019/06/National-AI-Research-and-Development-Strategic-
Plan-2019-Update-June-2019.pdf

5. A longer bibliography of work related to human-aware 
AI from other research groups can be found at rakaposhi.
eas.asu.edu/cse591 as part of a graduate seminar at Arizona 
State University on the topic. A 4 hour AAAI 2020 tutorial on 
model-based synthesis of explainable behavior for human-AI 
interaction is available at https://rakaposhi.eas.asu.edu/
haai-2020-tutorial.html

6. Pointing explanations are not even sufficient for image 
classification. Consider the case of  adversarial examples, 
e.g. an adversarially doctored image of a  school bus being 
classified as an ostrich. Imagine the futility of having an AI 
agent point to the region(s) of the school bus that explain 
why the agent thinks it is an ostrich!

7. A description of the ELIZA program can be found at 
en.wikipedia.org/wiki/ELIZA.
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