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The goals of computer vision and robotics are to meet 
or exceed human-level capabilities in perception, 
locomotion, and manipulation. Human vision is so  

effortless and yet computer vision is so difficult. Any ordi-
nary child can discriminate dogs from cats, fire trucks from 
police cars, and rocks from bushes, but even the most sophis-
ticated object recognition systems cannot match the visual 
abilities of a young child. Robotic locomotion is similar in 
that it is easy for animals but challenging for machines. For 
example, a newborn deer can walk within hours of birth, 
but robotic locomotion within a forest is still an unsolved 
challenge. While it is clear that robotic manipulation sys-
tems can perform better in tailored environments, para-
doxically it is often the case that the easier a physical task 
appears to be, the harder it is to automate; the same can 
be said for vision systems. Vision and robotics are artificial 
intelligence (AI) complete in the sense that solving these 
pursuits requires general-purpose AI. Vision and robotics are 
not peripheral fields of study that are ancillary to AI, they 
are inseparable embodiments of AI.

In 1975, the Defense Advanced Research Projects Agency 
(DARPA) started what would become the longest running 
program in its history: Image Understanding (IU). Military 
applications of computer vision were easy to imagine, and 
one could readily appreciate the value and potential impact. 
The original goals of the IU program were clear — explicitly 
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locomotion, and manipulation. Not 
surprisingly, that is perhaps easier said 
than done. Beginning in the 1970s,  
the Defense Advanced Research Projects 
Agency started the ambitious Imaging 
Understanding program that would 
continue for more than 20 years. The 
Imaging Understanding program began 
with fundamental research and slowly 
evolved into a host of more applied 
efforts with specific systems goals. 
Robotics programs followed a sim-
ilar arc as the early research-oriented 
programs generated capabilities from 
which practical systems could be built. 
A culmination of the vision and robot-
ics research was the Defense Advanced 
Research Projects Agency Grand Chal-
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of a self-driving car into an imminent 
reality. This article tells the story of 
how some of the modern-day technol-
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lution from research sponsored by the 
Defense Advanced Research Projects 
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envisioned applications included automated cartog-
raphy, satellite image interpretation, cruise missile 
guidance, and automatic target recognition (ATR). It 
is unlikely that program manager David Carlstrom 
and DARPA management at the time realized the dif-
ficulty and complexity of the undertaking that they 
were embarking on.

In the early days of the IU Program, DARPA real-
ized that they needed first to advance the basic sci-
entific foundations of IU before practical systems 
could be designed and built. The first steps toward 
IU research gradually sorted themselves into four 
schools of thought that can be traced through the 
community to this day.

Early Vision
Best exemplified by the pioneering works of Azriel 
Rosenfeld, David Marr, and Tomaso Poggio, this line 
of research attempted to mimic the processing of the 
human visual system. This work focused on the lowest 
levels of visual processing — the first few stages within 
and after the retina, and gave rise to such important 
concepts as edge finding, interest points, textures opti-
cal flow, stereopsis, 2.5D depth, and the primal sketch.

Physics-Based Vision
In contrast to early vision that took a biologic approach 
to vision, this school of thought approached the 
problem from the perspective of a physicist. The idea 
was to model vision as a system of mathematical 
equations for the refraction of light by lenses and the 
reflection of light by surfaces with various material 
properties. The solution to a computer vision problem 
could then be found by inverting the mathematics of 
image formation. Berthold Horn and Thomas Binford 
are two of the earliest and most preeminent practi-
tioners of this approach.

Statistical Approaches
Some early research focused on modeling the neuron 
as a computational unit. Minsky and Papert’s work on 
the multilayer Perceptron is widely regarded as the 
seminal work in this area, which eventually gave rise 
to the modern-day neural net. Later, methods based 
on Markov random fields and their variants were pro-
posed for texture and image representation and seg-
mentation. Techniques like simulated annealing were 
used for image restoration and stereopsis, and Bayesian 
methods were developed for object recognition.

Vision and Robotics

In September 1977, I joined the hand-eye group, led by Tom Binford, at the Stanford Artificial 
Intelligence Lab. I had just arrived in the United States as a scruffy 22-year-old from Australia. I 
was immediately supported in my new research by the ARPA (as it was then) Image Understanding 
Program. That was at a time when it was possible to personally know every researcher in computer 
vision in the world, and I soon met most of those in the US through this program.

The key was a six-monthly workshop, rotating among locations next door to the research uni-
versities working on computer vision, where we submitted camera-ready copies of papers, which 
were published and available just a few weeks later at the current ARPA Image Understanding 
Workshop. And then we met and discussed.

My first workshop was just a few months later in Cambridge, Massachusetts in May 1978, 
where I presented a coauthored paper. I remember in particular that there I met a very young pro-
fessor, Takeo Kanade, of Carnegie Mellon University (CMU). National origin made no difference 
to having either Takeo or me working on important defense problems in the US. I had another 
paper at the next workshop, in November 1978, and that one was held in Pittsburgh, Pennsylvania, 
hosted by CMU. And so-on, every six months. I was now really in the vision community, sharing 
ideas in an extremely timely manner, and making rapid progress, despite what now we would 
view as having only laughably slow and small computers.

My work was about using high-level knowledge in computer vision, as we know happens in 
human vision. My ACRONYM model-based vision system was an AI reasoner that used geometric 
models of the objects it was looking for to drive the low-level vision processes and move up and 
down the representation stack making inferences in both directions. The ARPA IU program gave 
me the freedom to pursue radical ideas at the intersection of AI and vision in the interest of new 
capabilities.

And that friendship with Takeo Kanade? It turned into the two of us cofounding the Interna-
tional Journal of Computer Vision in 1987 — it has a 30+ year history of being one of the leading 
journals in computer vision.

– Rodney Brooks
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Engineering
Many computer vision researchers took an engineering 
approach devising a wide array of creative solutions 
in quest of building working systems. Using appro-
priate combinations of sensors, signal processing, and 
other mathematical techniques supported by exper-
imentation and systems, IU researchers came up with 
increasingly well-founded components and innovative 
solutions to many vision tasks. Some of the most suc-
cessful early visionaries in this camp include Aggarwal  
Bajcsy, Brooks, Davis, Fischler, Grimson, Hanson, 
Huang, Kanade, Mundy, Nayar, Nevatia and Riseman.

In the 1970s and 1980s, achieving the full poten-
tial of any of these approaches was impossible due to 
the lack of available computational power. As a result, 
experimentation was limited to a relatively small 
number of images, and technology development 
was slow. Statistical approaches in particular, which 
require a very large quantity of exemplars, were slow 
to find favor.

The IU program continued to make advances for 
more than 15 years until it gave way in 1992 to a host 
of more-applied programs focused on system-level 
results for specific goals. Robotics programs followed 
a similar arc as the early research-oriented programs 
generated capabilities from which practical applica-
tions followed (see figure 1). The goals of vision and 
robotics have remained largely unchanged, and have 
been achieved in limited contexts. This article tells 
the story of how some of the modern-day technolo-
gies we enjoy today originated from research spon-
sored by DARPA over the last 40 years.

The Golden Years  
of the DARPA IU Program

From 1975 to 2000, the DARPA IU program that 
began as a basic research program slowly morphed 
into an effort supporting specific tasks such as 
ATR, satellite and aerial image exploitation, visual 
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surveillance, and so forth. During this period of 
what may be called the golden years, significant 
strides were made in advancing new theories and 
computational methods for a variety of computer 
vision problems. We review the progress and most 
prominent results made during these years by con-
sidering three periods: 1975–1980, 1981–1990, and 
1991–2000. The original participants of the IU pro-
gram are listed in table 1. Due to space constraints, 
we could not include many other equally impor-
tant results and efforts.

The first five years of the program (1975–1980) saw 
breakthroughs in early vision and pioneering research 
in physics-based vision. The seminal work of Marr 
and Hildreth in deriving a theory of edge detection 
laid the foundation for one of the basic problems in 
computer vision — edge detection. Their pioneer-
ing work brought together concepts from signal 
processing and neuroscience, and showed that the 
zero-crossings of the Laplacian operator on a Gaussian- 
smoothed image could serve as edges and generate 
what is known as the primal sketch. In another pio-
neering effort, Berthold Horn at the Massachusetts 
Institute of Technology (MIT) developed the con-
cept of the bidirectional reflectance function and 
derived an expression that related the 3D depth 

of a scene or an object to its 2D image through a 
nonlinear mapping known as the reflectance func-
tion. This made it possible to recover 3D structure 
from a single image by solving a nonlinear partial 
differential equation using the characteristics strips 
approach. This period also witnessed the emergence 
of the seminal computational theory of human ste-
reo vision by Marr and Poggio using the zero-crossing 
contours extracted from the left and right images 
of a stereo pair. Grimson extended the Marr-Poggio 
theory to yield the Marr-Poggio-Grimson algorithm 
for stereopsis with results on aerial and satellite 
images.

Throughout the following decade, IU continued 
to make strides in early vision and physics-based 
vision. Regularization was the dominant theoretical 
paradigm that emerged in these years. The key reali-
zation was that computer vision tasks such as shape 
recovery from a single image, a stereo pair, or a video 
sequence are ill-posed problems; therefore, Poggio 
and others developed the regularization method that 
led to a systematic approach for developing computer 
vision algorithms. In this approach, one would iden-
tify a function to optimize with appropriate con-
straints such as surface or motion smoothness, and 
derive the Euler-Lagrange equations that could then 

Institution Key Personnel Areas of Investigation

University of Southern California Andrews, Nevatia, Price Aerial image interpretation, object  
recognition, digital image restoration

SRI International Barrow, Bolles, Garvey, Tenenbaum Aerial image interpretation for cartography 
and intelligence using prior knowledge 
of the scene

Stanford University Binford Stereo photointerpretation using spatial 
features and spatial relations

University of Rochester Feldman Query-driven, top-down approach to aerial 
image interpretation for ship finding

Purdue University Huang, Fu Scene analysis using syntactic approaches, 
segmentation using texture and gray-
level, random field approach to pattern 
classification, Fourier descriptors of shape

Honeywell, Inc. Larson Multiresolution ATR in airborne for-
ward-looking IR imagery

CMU Reddy 3D-scene understanding, knowledge 
representation and search, image feature 
analysis and segmentation, change  
detection, knowledge acquisition

UMD Rosenfeld ATR in forward-looking IR imagery

MIT Winston, Horn, Marr Representation as the key issue, reflectance 
maps for image synthesis and registration, 
primal sketch for a comprehensive theory 
of recognition

Table 1. Original Participants of the IU Program.
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be solved using discrete optimization methods. Horn 
used this approach for shape recovery from a single 
image and computation of optic flow. The regular-
ization approach could be equivalently interpreted 
as minimizing an energy function or maximizing 
the posterior probability density function of enti-
ties that were being extracted.

This approach could accommodate both deter-
ministic and probabilistic methods to computer 
vision problems. As an example, the approach was 
used by Geman and Geman (1984) in their seminal  
work considering the problem of posterior density 
maximization when underlying image data are 
represented using Markov random field models  
(or equivalently, Gibbs distributions). The DARPA 
IU program did not directly support this work, 
but it still had a great impact on many computer 
vision algorithms such as the maximum posterior 
marginal methods designed by Marroquin and Poggio. 
In 1986, Canny published a seminal work on optimal 
step edge detection in Gaussian noise using a com-
bined metric that is a function of probability of 
detection, localization error, and false detections. 
The resulting optimal detector was approximated using 
the directional derivative of a Gaussian smoothed 
image. Canny later introduced clever tricks, including 
hysteresis and noise estimation, to produce more- 
effective edge-detection results.

The 1980s also saw the emergence of image 
sequence analysis for estimating the motion and 
structure of a 3D rigid object. Longuet-Higgins and 
Prazdny developed a theory relating the structure 
and motion of a 3D object to optical flow. Horn and 
his colleagues developed a class of methods known 
as direct methods for motion and structure estima-
tion from optical flow. Adiv followed these works 
and demonstrated the recovery of the structure and 
motion of moving objects by segmentation. While 
these continuous approaches gained much trac-
tion, in parallel, methods based on discrete features 
such as points, lines, and contours were developed 
by Huang, Aggarwal, Bolles, Broida, Kanade, Price, 
Baker, Szeliski, and others. 3D object recognition 
approaches using 2D images and 3D-range data were 
also developed, including Grimson’s work on inter-
pretation trees, Hummel’s work on geometric hash-
ing, and Brooks’s work on a scene-labeling system 
called ACRONYM. Another major development was 
the notion of purposive vision or active perception 
proposed by Garvey and elaborated by Bajcsy and 
Aloimonos (Aloimonos, Weiss, and Bandyopadhyay 
1988).

During the 1990s, IU engineering and physics- 
based approaches prevailed as computational power 
and the availability of video data created many chal-
lenges and opportunities. Due to the availability of 
high-end computers, the problem of tracking one 
or more objects from stationary and moving cam-
eras became viable; object tracking methods based on 
probabilistic data association, Kalman filters, Lucas-
Kanade registration algorithm, and particle filters were 

developed. Particle filters introduced by Isard and 
Blake in 1996 became appealing due to their ability  
to handle nonlinear motion and non-Gaussian noise 
models. Object tracking in video acquired by moving 
cameras required the stabilization of video sequences 
before independently moving objects could be detected 
and tracked. A plethora of real-time and near real-time 
methods were developed for the problem of video sta-
bilization and mosaic construction. It is worth noting 
that commercial versions of this algorithm began to be 
incorporated into hand-held video cameras to elimi-
nate undesired camera motions and jitter.

Progress in detecting, tracking, and classifying 
moving humans and vehicles was made possible 
by the DARPA programs Unmanned Ground Vehi-
cles (UGVs) and Visual Surveillance and Moni-
toring (VSAM). The UGV program demonstrated 
capabilities such as landmark-based navigation, 
and reconnaissance, surveillance, and target acqui-
sition. The W4 system developed at the University 
of Maryland (UMD) and the VSAM testbed devel-
oped at CMU are good examples of progress in 
this area. This period also saw the development of 
additional work on structure from motion using 
monocular and binocular sequences. The first 
data-driven method for recovering the structure 
and motion of a moving object from point corre-
spondences established over a long sequence under 
an orthography assumption, known as the factor-
ization theorem, was developed by Tomasi and 
Kanade. This period also witnessed breakthroughs 
such as normalized cuts for the problem of tex-
ture segmentation by Shi and Malik, anisotropic 
diffusion methods for edge detection by Perona 
and Malik, and subspace-based methods for face 
recognition by Belhumeur, Chellappa, Kriegman, 
Pentland, and Turk.

By the end of the century, the IU program had 
matured from one exploring fundamental concepts 
in computer vision, into a disciplined investigation 
into many practical applications of IU (figure 2). The 
field had grown from small research projects at a 
dozen prominent universities to the point that all 
major universities in the country had faculty special-
izing in IU, and computer vision was taught at the 
undergraduate level of all science and engineering 
universities. By the year 2000, the research-oriented 
IU program gave way to a succession of dozens of 
individual programs focused on specific applica-
tions of IU. DARPA was eager to capitalize on the 
new capabilities afforded by its prior investments in 
the IU program and the concomitant advancements 
in compute power and proliferation of low-cost, 
high-resolution cameras.

Applications of IU and Robotics
In the mid-1980s, DARPA began to explore appli-
cations of IU such as autonomous land vehicles, 
aerial image analysis, and satellite image exploita-
tion in addition to the research-oriented IU program. 
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Typical applications of IU that motivated research in the 1990s and spawned military and commercial applications in the years that followed. 
Adapted from the cover of the Image Understanding Workshop Proceedings, May 1997.
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Since the early 1990s, increasing emphasis was given 
to application-driven programs such as UGVs, 
ATR, and image exploitation (RADIUS). The ATR 
program encouraged computer vision research-
ers to look beyond traditional visible spectrum 
imaging and explore target detection and recog-
nition algorithms using infrared (IR), light detec-
tion and ranging (LIDAR), and synthetic aperture 
radar (SAR) images. An interesting development 
with ATR using SAR images was the creation of the 
Moving and Stationary ATR program that incor-
porated many computer vision concepts such as 
focus of attention, feature extraction, indexing, 
prediction of features using sensor physics, and 
model-based recognition. Given the nature of the 
problem, Moving and Stationary ATR involved 
participation from several universities including 
Ohio State University, UMD, MIT, and companies 
such as the Environmental Research Institute of 
Michigan (Ann Arbor, Michigan), ADS Inc., and 
AlphaTech. IR and LIDAR-based IU algorithms also 
found applications in the UGV program.

The RADIUS program looked at the problem 
of model-supported exploitation (figure 3). The 
approach was to build 3D models of a site using pre-
viously collected images, and monitor the site for 
changes due to new construction or vehicle-related 
activities. To enable the integration of algorithms 
that the researchers developed at various institu-
tions (e.g., Lockheed, CMU, SRI International, UMD, 
USC, and the University of Massachusetts), a soft-
ware environment known as the RADIUS Common 
Development Environment was provided. This was 
one of the first such examples of software integration 
of computer vision algorithms with the end-goal of 
providing software systems to the end users.

In 1997, DARPA initiated three application-oriented 
IU programs: Battlefield Awareness, Automated Popu-
lation of Geospatial Databases, and Visual Surveillance 
and Monitoring (VSAM). These efforts covered terrain 
modeling and exploitation using video, SAR imagery, 
LIDAR, and Digital Elevation Maps. VSAM was the 
most prominent of these three programs, due largely 
to the new availability of video images acquired by 
unmanned aerial vehicles (UAVs). The VSAM program 
involved many university research groups and a few 
companies. In the late 1990s, the Airborne Video Sur-
veillance program with participation from Harris Cor-
poration, Sarnoff Corporation, SRI, and UMD looked 
at the problem of activity recognition in aerial video 
sequences. The highlight of the Airborne Video Sur-
veillance program was a live demonstration of real-
time video exploitation over the Fort A.P. Hill military 
reservation.

Programs such as RADIUS and Moving and Station-
ary ATR gave rise to the Dynamic Database program, 
which considered the problem of image and signal 
exploitation using a multitude of data such as elec-
tro-optical/IR, SAR, hyperspectral images, and signal 
intelligence. The trend of analyzing a large collec-
tion of aerial videos continued for many more years 

through programs like VIdeo-based Verification and 
Identification (or VIVID), Video Image Retrieval and 
Analysis Tool, and Persistent Stare Exploitation & 
Analysis System. These programs further developed 
algorithms and systems for detection and tracking of 
objects, object verification, and object recognition as 
well as activity recognition in UAV video and wide-
area motion imagery. These problems are still being 
studied today by the US Department of Defense 
Maven program, which is making use of research 
results developed earlier under DARPA funding.

The Autonomous Land Vehicle (ALV) program 
(figure 4) in its early stages involved many university 
research groups and companies such as Martin- 
Marietta for designing the sensors suites and integrat-
ing algorithms for object detection, obstacle avoidance, 
and navigation. The ALV program morphed into the 
UGV program that built vehicles with sensors such 
as stereo and IR cameras and LIDAR, enabled by 
algorithm development at CMU. A high point of the 
UGV program was the CMU demonstration of a car 
that drove unassisted for almost 95% of the distance 
from Pittsburgh to San Diego. The UGV program 
laid the foundation for the DARPA Grand Challenge 
that saw many leading groups in the country com-
peting for bragging rights. It is not an exaggeration 
to say that what we are witnessing today in the area 
of autonomous cars has its origins in many DARPA 
programs undertaken since the mid-1980s.

Due to the successes in VSAM, other applications of 
ground-based video sequences were explored. Of note 
is human identification at a distance that developed 
gait and face recognition methods at distances of 10–20 
meters. These programs were not continued by DARPA, 
but other agencies further extended them. For example, 
the Multi-Disciplinary University Research Initiative 
on Remote Biometrics in the Maritime Domain by the 
Office of Naval Research and the Biometrics Exploita-
tion Science & Technology and JANUS programs by 
the Intelligence Advanced Research Projects Agency 
(IARPA) organization have looked at developing robust 
face verification and identification algorithms. The 
algorithms for action recognition from video sequences 
originally investigated by the DARPA IU program have 
inspired ground-based activity recognition in DARPA’s 
Mind’s Eye program and served as catalysts for the 
Advanced Research and Development Activity Video 
Analysis and Content Extraction (or ARDA-VACE) pro-
gram as well as IARPA programs including Aladdin and 
Deep Intermodal Video Analytics.

During the course of the IU Program, the roles 
played by data availability, hardware improvements, 
and software developments cannot be ignored. In the 
early days of IU research, data to support the evalua-
tion of algorithms and systems was not readily avail-
able; in particular, ground truth and meta data were 
hard to obtain. Sensors improved in terms of form 
factor and performance, making them more acces-
sible and resulting in an increase in data available 
to researchers. The calibrated imaging laboratory at 
CMU is a good example of early efforts in collecting 
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Figure 3. Model-Based Exploitation.

Model-based exploitation as developed in the RADIUS Program used site models to guide IU algorithms for reliable detection and recognition 
of vehicles in SAR images such as this (DARPATech, 2004).

data for testing many computer vision algorithms. 
Another good example is the release of high-resolu-
tion SAR images in the early 1990s by the MIT Lincoln 
Laboratory. ALV and UGV program platforms, along 
with UAV platforms, also enabled the collection of 
videos from moving sensors used in DARPA research 
programs and were provided to researchers for use on 
programs sponsored by other government agencies. 
The wide availability of multimodal data enabled the 
quantitative evaluation of algorithms leading to the 

development of IU systems that can be transitioned 
from laboratories to the real world. More recently, the 
availability of large amounts of annotated data has 
enabled the training and, correspondingly, encour-
aged the development of deep-learning algorithms.

As mentioned, the RADIUS Common Develop-
ment Environment, which was developed by Quam 
at SRI, was one of the earliest software environments 
that enabled the integration of IU algorithms into 
a software system. The DARPA IU Environment and 
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its extensions followed soon after. The IU Environ-
ment was a community-wide effort led by Mundy 
and Boult that incorporated the vast majority of IU 
techniques. The developed software environments 
were open-source; the availability of the software 
facilitated collaborations across research groups and 
accelerated the development of research prototypes.

As applications of computer vision became tech-
nologically feasible, the need to compute results fast 
enough to provide real-time solutions for interactive 
and video processing systems grew. In the 1990s, 
the need to have faster implementations and real-
time video processing algorithms led to the develop-
ment of specialized computing hardware such as the 
Connection, Data cube, and Hybercube machines. 
This trend continued and gave rise to graphics- 
processing-unit implementations of IU algorithms, 
and eventually to the development of deep-learning 

algorithms. The necessity of high-performance hard-
ware and reliable software is especially obvious in real-
time applications such as autonomous vehicles.

Perhaps surprisingly, when artificial neural net-
works (ANNs) made a comeback in the 1980s, largely 
due to the seminal work of Hopfield, the IU commu-
nity was not yet totally on board with neural net-
works. The approach of feeding data into a 3-layer 
network and receiving object labels as outputs was 
not appealing as computer vision researchers were 
more interested in modeling 3D geometry, illumi-
nation, and articulation. The 3-layer ANN black-box 
approach was not seen as explainable or capable of 
achieving human-level recognition rates. Although 
the DARPA IU program did not encourage approaches 
based on ANNs, many computer vision researchers 
developed algorithms based on neural networks. As 
examples, we point out Kanade and Poggio’s work 

Figure 4. ALV Vehicle.

The DARPA ALV Program was the world’s first outdoor vehicle to operate autonomously. The large size of the vehicle was necessitated by the 
large quantity of computing machinery required to process the sensor data from the cameras and LIDAR. (DARPA, 2018)
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on face detection and Dean Pomerleau’s demonstra-
tion of almost autonomous driving from Pittsburgh 
to San Diego. In the mid to late 1980s, a program 
focused on ATR using ANNs was initiated by DARPA. 
The reemergence of deeper ANNs as deep-learning 
networks has contributed to the creation of more 
recent programs such as Explainable AI (or XAI).

Robotics Research
In the robotics arena, beginning in the 1960s, DARPA 
funded investigations into the fundamental concepts 
of robots. Efforts included perception, representation, 
planning, and locomotion. The DARPA-sponsored 
Shakey robot, developed at SRI, is widely regarded 
as the first attempt to integrate all of the above-
listed aspects into a complete mobile robotic system 
both situated in the world and responsive to human 

commands. Since that ambitious beginning, DARPA 
has pursued many robotic programs in an attempt 
to accelerate the introduction of robots onto the 
battlefield. Flying robots proliferated before ground 
robots, as the airborne environment is simpler than 
the environment on the ground. UAVs face a far 
lower obstacle density than UGVs do, and today there 
are many dozens of different UAVs used by the US 
military, while only a few UGVs have been adopted 
operationally.

In 1972, DARPA began developing US military 
UAVs with the creation of the Remotely Piloted 
Aerial Observation/Designation System, which led 
to the production of the Aquila Unmanned Aircraft 
System, or UAS, in 1983. Since that time, DARPA 
pioneered the widely used Predator, Global Hawk, 
and many other UAVs that have entered military ser-
vice, from micro air vehicles (or MAVs) such as the 

DARPA IU and My Research

I came to the United States and joined the CMU – DARPA IU team in 1976. To a young person who 
had finished his PhD and then worked briefly as a junior faculty member in a Japanese university, 
where at that time computer vision research was done only on a small scale, everything was dif-
ferent, exciting, and overwhelming. That I could write my programs at any time, even from my 
apartment, was a paradise to me. The images given to deal with and the tasks to aim for were real. 
At the DARPA IU Workshop, where all the contractors get together, I found my heart pounding 
when mingling and talking with legendary researchers such as David Marr, Tom Binford, Marty 
Fischler, and Azriel Rosenfeld, whom I had known only by name from textbooks.

The mid-1970s to the mid-1980s was a dynamic period for computer vision. Emphasis on use of 
knowledge was revealing a new aspect of visual understanding, apart from that of pure signal pro-
cessing. Marr’s paradigm was leading the way to relate computer vision with psychology and neu-
roscience. Many shape-from methods were invented, with eye-opening results. Many challenging 
applications, such as aerial photo interpretation, industrial, robotic, and medical, were percolating. 
The DARPA IU Program was the major force in driving forward this emerging field of computer 
vision.

Our CMU computer vision group has performed in diverse IU projects for more than 35 years. 
Fond memory was abundant. The theory of the Origami World and shape-recovery from a single 
image was my IU debut work. The Lucas-Kanade optical flow was originally developed for the 
image registration task in aerial photo interpretation. The CMU Navlab driverless-car project, 
which we started in 1985 as part of the DARPA Autonomous Land Vehicle Project, eventually led 
to our 1995 No Hand Across America demonstration. Carlo Tomasi’s factorization method and 
Shree Nayar’s reflection model were among our responses to call for new shape-from methods. 
For the VSAM project in early 2000, CMU as the system contractor ran big demos yearly involv-
ing on- and off-campus networks of surveillance cameras and even a flying airplane for tracking 
people and cars. Our idea of using a large number of cameras for capturing and modeling scenes, 
although very common today, was initially regarded strange or even lunatic, but DARPA funded 
us to develop first a five-camera video-rate stereo machine and then a 51-camera 3D dome, which 
eventually transformed into the current 480-camera Panoptic Studio; on its way, the technique 
was used for a movie Matrix-like replay system, EyeVision, in the broadcast of Superbowl XXXV.

Throughout these projects I learned one most important thing. Computer vision must work 
in the real world, and for that, we must make theories, algorithms, computing, and sensors work 
together as a system. One may think that it is obvious, but in the early days, computer vision 
did not work. I was extremely lucky that I learned this lesson by participating in the DARPA IU 
Program. Researchers in the DARPA IU community were my best comrades and rivals. Successive 
program managers were tough and supportive. Tasks from military users were challenging and 
real. All in all, it was the best research environment for me. My whole career would not have 
existed without DARPA IU.

– Takeo Kanade
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6-inch Wasp to the Unmanned Combat Air Vehicle 
(or UCAV).

In the ground vehicle domain, DARPA’s early work 
on SRI’s Shakey and Marc Raibert’s one-legged hopping 
robots paved the way to many other research projects. In 
1983, DARPA launched the ALV program (see figure 4)  
led by Martin-Marietta, and supported by many uni-
versities; it was the first attempt to build an unmanned 
vehicle that could operate outdoors. Progress on ALV 
led to the creation of follow-on programs such as 
the Unmanned Ground Vehicle and Perception for 
Off-road Robotics. The Tactical Mobile Robots Program 
explored a wide variety of approaches to locomotion, 
navigation, planning, and control, and gave rise to 
notable systems including Big Dog, and PackBot. While 
UGVs have yet to achieve widespread use as combat 
vehicles, they have proliferated for dealing with impro-
vised explosive devices in Iraq and Afghanistan.

In the manipulation domain, the Autonomous 
Robotic Manipulation (or ARM) program developed 
software for intelligent control of manipulators and 
low-cost rugged and dexterous multifingered hands 
and arms. In the 1990s, robotic motion planning was 
an important unsolved problem for planning trajec-
tories under uncertainty while preventing collisions. 
Jean-Claude Latombe at Stanford University devel-
oped many variants of the probabilistic roadmap 
planner for path planning in high-dimensional con-
figuration space. Oussama Khatib made fundamen-
tal advances in dexterous dynamic coordination, 
virtual linkages to model internal forces in cooper-
ative manipulation, dynamic task decoupling, and 
human-robot compliant interaction.

Manipulation, locomotion, planning, and control 
all came together in 2011 when DARPA conducted the 
DARPA Robotics Challenge (DRC; figure 5). The DRC 
was a competition motivated by the 2011 nuclear dis-
aster at Fukushima Daiichi in Japan; this competition 
developed and exhibited human-supervised ground 
robots capable of executing complex tasks in danger-
ous, degraded environments using tools and equip-
ment commonly available in human-engineered 
spaces.

Unmanned naval vessels have also been addressed. 
Not many details are public, but applications span 
unattended buoys that sense the ocean environment 
while harvesting energy from the waves, autono-
mous surface vessels called wave gliders that travel 
large distances also by harvesting energy from the 
waves, and unmanned underwater vessels that probe 
the ocean at depths unsafe for humans. To date, the 
pinnacle of unmanned naval vessels is the DARPA 
Anti-Submarine Warfare Continuous Trail Unmanned 
Vessel (or ACTUV), which was commissioned in 
2016.

Commercial Impact of DARPA 
Investment in IU and Robotics

DARPA investments in IU and robotics were 
clearly aimed at accelerating the availability of key 

technologies for use in military systems by stimulat-
ing basic research and by producing early prototypes 
of previously infeasible components. These invest-
ments paid off in many ways that cannot be listed in 
an open publication, and will continue to do so in the 
foreseeable future. These same advancements created 
and enabled by DARPA programs in IU and robotics 
have given rise to an array of novel commercial prod-
ucts as well, and in some cases have enabled entire 
industries that are making major contributions to the 
US economy.

Commercial applications of computer vision began 
to flourish beginning in the mid-1990s with the 
simultaneous emergence of three developments: 
IU algorithms with high reliability, low-cost com-
puter processors and graphics processing units 
with sufficient processing power, and the prolifer-
ation of low-cost high-resolution digital cameras. 
The most influential commercial applications of IU 
are ones that we hardly notice. The proliferation 
of images on the internet created the demand for 
tools that could rapidly retrieve images based on 
content, and thus the Google image search capabil-
ity was born. The emergence of smart phones with 
cameras gave rise to intrinsic tools such as pan-
oramic mosaics and high-dynamic-range images 
that had been pioneered in DARPA IU workshops 
a decade or two earlier. In fact, the entire field of 
computational photography is now a burgeoning 
industry with roots that trace to innovators in the 
IU Program. The rapid progress in face recogni-
tion has found its way into hundreds of commer-
cial products and dozens of companies have been 
created to pursue applications from photo albums 
to smart-phone authentication to forensics. The 
introduction of video-understanding algorithms 
transformed video surveillance from a passive activ-
ity to one that actively seeks particular actions and  
behaviors.

The commercial adoption of robotics has been 
even more striking. When the Roomba was intro-
duced by iRobot as a household vacuum cleaner in 
1999, consumer robots were still the subject of science 
fiction. At the time, iRobot was a DARPA-sponsored 
company that created the PackBot, a robot designed 
for elimination of explosives on the battlefield. Today 
more than a dozen companies market household 
robots, and the industry is valued at more than $2B 
in the US alone.

Finally, it is hard to overestimate the size of the 
impact that the DARPA Grand Challenge has had 
on the automotive industry. From a humble but 
ambitious beginning in the Mojave Desert in 2004, 
the Grand Challenge has redefined the prospects 
of self-driving cars. From “that will never happen 
in my lifetime” to self-driving components that 
are being offered today by nearly every automobile 
manufacturer (e.g., intelligent cruise control, park-
ing assist, lane following, blind-spot warning, col-
lision avoidance), DARPA has helped create a $100 
billion industry.
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Figure 5. The 2011 DRC.

The 2011 DRC saw a diverse range of robots. The 24 robots pictured above participated in the DRC Finals. Dashed lines 
show heights of 1m and 2m, respectively. ©2016 Wiley Periodicals, Inc. Reproduced with permission from E. Krotkov, D. 
Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and C. Orlowski, 2017, “The DARPA Robotics Challenge,” 
Journal of Field Robotics, 34(2)2: 229–40.
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The DARPA Grand  
Challenge: A Case Study

The DARPA Grand Challenge represents a premier 
example of DARPA accelerating progress on a chal-
lenging research area of critical importance to the 
US Department of Defense. In 2002, DARPA had 
multiple programs underway with goals to advance 
the state of the art in UGVs. DARPA had pursued 
these technologies beginning with the ALV program 
as part of the Strategic Computing Initiative begun 
in the late 1980s. The research encompassed all 
aspects of autonomous driving including sensors, 
computation, obstacle detection, road-following, 
subsystem control, and higher-level planning and 
reasoning. These programs sponsored research and 
development projects at many defense contractors 
and research universities that featured a steady 
procession of increasingly sophisticated demon-
strations. Much progress was made, but the goal 
of UGVs to support military operations remained 
elusive, and frustration was growing with unmet  
expectations.

In parallel with these technical developments, 
DARPA was innovating on another front. While 
DARPA is widely recognized for its many technical 
innovations, it also has an extensive, although less 
well-known, track record of innovation in the acqui-
sition of research and development. With excep-
tional foresight, DARPA requested, and was granted 
by Congress, the authority to issue cash prizes in 
reward for technological achievement. This obscure 
provision was a historical first for any agency in the 
federal government. In this case, the limit was set 
at $1 million, but the specific technical area was left 
to DARPA’s discretion. Early in 2002, DARPA Direc-
tor Tony Tether issued a call for ideas and eventually 
selected a race for autonomous ground vehicles as 
the subject for what is now known as the first DARPA 
Grand Challenge for Autonomous Ground Vehicles. 
Dr. Tether had two primary challenge criteria: The 
topic should be accessible by many — anyone with a 
car and a laptop computer could attempt to assemble 
an entry; and the winner should be clear to all — 
the vehicle that completes the course in the shortest 
amount of time wins the $1 million prize.

The concept was simple. DARPA specified the 
route that must be followed — a desert course over 
rough terrain from the outskirts of Los Angeles to the 
fringes of Las Vegas — but kept the 140-mile course 
secret until 2 hours before the start of the event. 
Colonel Jose Negron was the Director of the Grand 
Challenge held in April 2004.

The response was tremendous. More than 100 
robot teams eventually formed and completed the 
application process to participate in the Grand Chal-
lenge. Interest came from all corners. Many top uni-
versities, with CMU the early favorite, and defense 
contractors, were represented. There were even quite 
a few individual entries comprised of grease mon-
keys, mechanics, computer geeks, veterans of the 

TV show Junk Yard Wars, and other colorful charac-
ters who contributed novel approaches to sensing, 
control, and suspension systems, not to mention 
marketing. There was even a high school team — 
Palos Verdes High School — that convinced Acura to 
donate a brand-new SUV. The team had 63 kids, only 
two of whom had a driver’s license!

The vehicles were as varied as the entrants them-
selves. From SUVs and pickup trucks, to dune bug-
gies and custom-tracked vehicles, pit row was a 
veritable hodgepodge of every vehicle imaginable. 
With no limits set by DARPA, the vehicles ranged 
in size from the 32,000-pound behemoth military 
transport entered by the OshKosh Truck Corpo-
ration to the autonomous motorcycle entered by 
Anthony Levandowski of the University of Califor-
nia at Berkeley.

The results of the Grand Challenge of 2004 are well 
ensconced in history. After an extensive selection 
process, 15 vehicles started the race on the morning 
of March 13, 2004, but only four traveled more than 
4 miles, with Red Whittaker’s Sandstorm from CMU 
taking top honors with a distance of 7.4 miles. While 
that fell far short of DARPA’s lofty goal of 142 miles, 
it was still farther than any autonomous vehicle had 
traveled previously.

While the press tended to put a negative spin on the 
results as a disappointment, DARPA pointed out that 
the Wright Brothers’ first flight at Kitty Hawk lasted 
less than 30 seconds, and like the Wright Broth-
ers, DARPA was not deterred. DARPA announced a 
second Grand Challenge for Autonomous Ground 
Vehicles to be held 18 months later on October 4, 
2005. The results of that second Grand Challenge 
were much different, with five vehicles, including 
that 16-ton truck from OshKosh, completing the 
entire course. Stanford University (see figure 6) led 
the pack with the fastest time while CMU vehicles 
took second and third place. The age of self-driving 
vehicles had begun.

What changed? Why the sudden progress after 
decades of frustration? In a word, everything, in
cluding the way DARPA had gone about procuring 
technology:

DARPA hosted the race, but it didn’t contract with 
any of the teams that entered. Instead, each team 
was left to its own resources. In academia, many 
universities had departments or clubs that were pur-
suing mobile robotics; DARPA simply gave them a 
common cause on which to focus their resources. 
The academic spirit to solve the challenge better 
than their peers took over and drove the universities 
through a friendly competition.

In defining the Grand Challenge, DARPA specified 
the task, but did not specify the solution. Innovators 
were free to approach the challenge in practically 
any way they chose.

The military-focused programs all insisted upon 
retaining a human-in-the-loop. The Grand Chal-
lenge was the first time that a major program focused 
on fully autonomous operations. It turns out that it 
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is harder to interface with human operators than it 
is to provide complete automation.

By 2004, the prior research sponsored by DARPA 
and others had progressed to the point where solving 
the Grand Challenge was possible. What remained 
was the impetus to integrate the components. The 
Grand Challenge became that impetus.

Deep-learning technology was just maturing to 
the point where it could be put to practical use for 
road detection and following. The Stanford team did 
this exceedingly well, and rode it all the way to the 
finish line.

Interestingly, the major automobile manufactur-
ers were notably absent from the Grand Challenge 
teams. Many car manufacturers’ executives were 
present as observers and some had donated vehicles 
to the teams in the race, but mostly they were unwill-
ing to risk the reputations of their corporations on a 
technology as preposterous as a self-driving car. After 

his victory in 2005, Sebastian Thrun, the leader of 
the Stanford Team in the 2005 Grand Challenge, 
went on to create the self-driving car program at 
Google. Many of the other leading contenders at the 
Grand Challenge went on to prominent positions 
at self-driving car programs at other major corpora-
tions, and the automobile industry as a whole began 
to invest large sums of money in autonomous vehicle 
technologies. Today these capabilities are available 
as components of cars and trucks from most major 
manufacturers, and fully self-driving cars appear to 
be just around the corner.

Autonomous vehicle capabilities are proving to be 
a tremendous safety innovation as evidenced by the 
rapid endorsement of the auto insurance industry. 
Many military vehicles are equipped with self-driving 
vehicle capabilities as well, both for safety and for 
the enhanced military capabilities it affords. In 
the case of self-driving vehicle technologies, DARPA 

Figure 6. Stanley.

The winner of DARPA’s 2005 Grand Challenge — Stanley — and the team that built the autonomous vehicle. DARPA’s Assured Autono-
my program leverages some of the research pioneered more than a decade ago in DARPA’s 2005 Grand Challenge. (DARPA, 2018)
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has clearly achieved what DARPA was created to  
do — to accelerate the development of defense-related 
technologies while maintaining US technological 
superiority.

The impact of the Grand Challenge was felt far 
beyond the autonomous vehicle technology itself. 
Universities used the Grand Challenge as a design 
exercise for robotics classes and laboratories, regard-
less of their participation in the Challenge. And 
that high school team that entered the race? Their 
teacher/advisor started a robotics class that fall and 
had 350 high school students sign up. It became 

known as the DARPA class and became the most 
popular class on campus. That robotics class contin-
ues to be offered today at Palos Verdes High School.

Open Research
Tremendous progress has been made in advanc-
ing the art and practice of vision and robotics over 
the last decade, but classes of problems remain for 
which no solution is in sight. As mentioned at the 
outset, perception is an AI-complete problem, mean-
ing that it is unlikely that general-purpose computer 

Challenge Name The Task Why It Is Hard Why It Is Important

Describe The Scene Given an image (or short  
video clip), provide  
a narrative description  
of the scene, its contents,  
and what is happening  
in the scene

This would build on prior  
work in object recognition  
and activity recognition and  
face recognition, but would  
require putting these pieces  
together to reason about what  
is happening in the scene.  
It would presumably require  
elements of common-sense  
reasoning, 3D modeling,  
recognition of specific people,  
places, and events, and combine  
it with the ability to generate  
natural language descriptions

The visual world is a rich source  
of information for humans,  
but our mechanisms for  
providing information about  
that world in an accessible  
form is extremely limited.  
A solution to this general  
perception problem is essential  
for robots to operate in the  
world and interact in natural  
ways. Computer systems  
ingest information from  
pictures

Recognize Novel  
Objects

Train an object recognition  
system to learn a new class  
of objects from a single  
exemplar

Given that humans learn  
about objects from very few  
examples, robust methods for  
object/face/action detection  
and recognition from very  
few samples are needed.  
Another open challenge  
that existing deep-learning  
methods cannot handle is  
recognition or detection of  
new objects that were not  
present in the training data.  
Novel methods for zero-shot  
detection and recognition of  
objects are needed

While deep-learning methods  
have produced impressive  
performance gains for many  
computer vision problems  
such as object/face detection  
and recognition, they need  
large amounts of annotated  
training data to train. That  
makes system development  
costly, as annotated training  
data are often expensive to  
obtain. In other cases, large  
numbers of training data  
simply are not available, such  
as ATR in search of a newly  
introduced military vehicle

Integrate Autonomous  
Robots

Design mobile, manipulating,  
autonomous agents to  
interact with people in  
day-to-day lives

Today’s robots don’t interact  
smoothly with people. Robots  
can’t go where people go;  
robots can’t manipulate  
objects and materials as  
easily as people; robots are  
frustrating to talk to; robots  
have no common sense

To realize the full potential  
of robotic assistants, they  
need to assimilate into our  
everyday lives.

Examples of robots we want  
but don’t have: robotic maids;  
robotic gardeners; robotic chefs;  
robotic shoppers

Vision-Enabled 
Virtual Reality/ 
Augmented Reality 
Systems

Design the next generation of  
Virtual Reality/ Augmented  
Reality systems that integrate  
outputs of computer vision  
algorithms

Real-time generation of  
computer vision outputs  
is not there yet

Virtual Reality/Augmented  
Reality systems see the world,  
but do not know much about it

Table 2. Representative Problems.
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vision or robotics systems will be created anytime 
soon. In table 2 we present some representative 
problems, the solution of which would represent 
fundamental advancement in the foundations of 
vision and robotics research. These problems have 
been selected specifically because they do not sub-
mit readily to the machinery of deep-learning neu-
ral nets or other known techniques. The solutions 
to these problems would represent fundamental 
advancement in the foundations of vision and 
robotics research. Solutions to these fundamental 
problems will no doubt lead to new applications of 
great importance to both military and commercial 
enterprises.

Further research into problems like these is neces-
sary to advance the field and move ever closer to gen-
eral-purpose vision and robotics systems. DARPA can 
lead the way as it has done for the last 40 years with 
investigations into both fundamental research as well 
as problem-oriented applications. DARPA’s continued 
focus on perception and robotics will accelerate the 
innovations and advances in these important areas 
of AI. These innovations hold enormous importance 
to maintaining technological superiority as well as 
providing robust economic stimulus in the form of 
new companies, new products, and new capabilities 
to lead the nation.

While great advances have been made at the level 
of fundamental science as well as practical appli-
cations, the goals of computer vision and robotics 
remain largely unchanged from the early days — to 
match or exceed human-level capabilities in percep-
tion, locomotion, and manipulation. This goal has 
already been achieved in some narrow contexts, but 
general-purpose solutions that exhibit the full-range 
of performance of human visual systems and human 
arms, legs, hands, and feet will require additional 
investigation, funding and devotion — the type of 
commitment to which DARPA has proven itself to 
be uniquely suited.
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