
Roy S. Freedman and Robert P. Frail

OPGEN: The Evolution of an Expert System for
Process Planning

Definition of the Problem Domain
Processplamirtg is an activity that is performed routinely by
industrial engineers in order to schedule and allocate re-
sources for equipment assembly. The planning activity con-
sists of the following: Given a collection of electrical compo-
nent parts of a printed circuit board together with its layout
diagram, derive the sequence of operations required of a
technician (or robot) for the correct assembly of the printed
circuit board. The plans that result are called operations
sheets.

At Hazeltine, process planning is an industrial engineer-
ing activity that occurs after design and before assembly. In
the initial stage of process planning, the industrial engineer
carefully examines a parts list (obtained from the bill of ma-
terials file; see figure 1) and a detailed physical layout dia-
gram (see figure 2), that shows the proper placement of the
corresponding parts on the printed circuit board. The bill of
materials files are located on a Hazeltine IBM business com-
puter. The physical layout diagrams are prepared at a Hazel-
tine computer-aided design (CAD) facility After studying
these data, the industrial engineer applies expertise and ex-
perience to produce a detailed plan that specifies (a) which
components are to be installed; (b) the factory work center of
the installation procedure; (c) details associated with the in-
stallation procedure, such as special tooling or special inter-
mediate manufacturing activities or processes), and (d) when
the installation is to be performed. This detailed plan is writ-
ten by the industrial engineer on operations sheets. These
operations sheets are then used by production assemblers to
perform the actual printed circuit board assembly. The as-
sembly steps typically involve both the manual insertion and
the machine insertion of components (utilizing special
computer-aided manufacturing equipment).

Roy S Freedman is an associate professor at Polytechnic University in the
Depat tment of Electrical Engineering and Compute1 Science, Falmingdalc,
New York 11735 He also selves as a consultant for Hazeltine Corporation,
Gleenlawn, New Yolk 11740, as well as other organizations Robert P
Frail is a software engineer in the rcsealch labolatoly at Hazeltine Corpora-
tion, Greenlawn, New York 11740 and a senior teaching fellow at Polytech-
nic University where he is pursuing his Ph D

Previous Approaches with Conventional
Technology

In late 1981, operations sheets were handwritten by indus-
trial engineers (see figure 3). The creation of these opera-
tions sheets was an informal, tedious exercise. Previous ap-
proaches to the problem of automating the generation of
operations sheets was considered in conventional technology
by the business data processing department that serviced the
industrial engineering groups. The data processing depart-
ment regarded this task as infeasible for several reasons.

(1) there was very little documentation that described
the actual process-planning task, (2) the informal guidelines
used by the industrial engineers to generate operations sheets
were always being revised in accordance with specific as-
sembly runs, and (3) the industrial engineers required a high
degree of interactive capability with the system in order to
accommodate the various “exceptional conditions” that
arose during small assembly runs of nonstandard printed cir-
cuit boards. The data processing department was used to au-
tomating tasks that were well understood, well documented,
and formally specified by system analysts. As is discussed
later, the automation of process planning became an ideal
candidate for a knowledge-based expert system approach.

What makes the OPGEN task different from other simi-
lar configuration tasks is the magnitude of possible compo-
nent configurations: An industrial engineer can encounter
almost 50 thousand different parts in this planning domain.
In practice, when an industrial engineer encounters an

Abstract The operations sheets generator (OPGEN) is an expert
system that helps industrial engineers at the Hazeltine manufactur-
ing and operations facilities plan the assembly of printed circuit
boards In this article, we describe the evolution of OPGEN from
its initial development in the Hazeltine research laboratories to its
routine use in an integrated manufacturing environment We de-
scribe our approaches to the problems that occur red during the de-
vclopment, integration, and rehosting of OPGEN and provide some
methodological guidelines to expert system builders who are con-
cerned with the final delivery of an expert system

58 THE AI MAGAZINE

AI Magazine Volume 7 Number 5 (1986) (© AAAI)

w

w

R

w

Er4

ER

mm
I

l.wwe
3.ww8
i.ww8
l.&&?a3
l.wsw
3.?ma

1w

188

188

II

Figure 1. OPGEN Input. Unparted Parts Listfiom Bill of Materi-
als Database.

Figure 2 OPGEN bzput Circuit Layout Diagram.

unknown part, typically a set of questions are asked of a
knowledgeable source (a colleague or a manual) in order to
acquire this new part installation knowledge. OPGEN emu-
lates the industrial engineer’s ability to acquire this knowl-
edge.

____.._- _ _____
---- ------______

Figure 3 Example of a Handwritten Operatiorls Sheet

Initial Development Approach

In the following eight subsections, we present a brief discus-
sion of methodology for expert system development, selec-
tion of problem and tools, knowledge engineering and proto-
type implementation, operational feasibility, and the actual
development of a working prototype of a process planning
expert system.

Methodology for Expert System Development

Expert systems require a software development methodol-
ogy that differs in some respects from those methodologies
used for conventional systems. Most knowledge-based de-
velopment methodologies used by organizations experi-
enced in building expert systems are similar in that they con-
centrate on the early (feasibility) stages of a project. Very
little has been published on the later stages, which are con-
cerned with expert system delivery, integration, and mainte-
nance. During the development of OPGEN, we incorporated
the lessons learned in these early stages and revised our orig-
inal approach to provide for integration and maintenance.

Most expert system development methodologies are a
variation on the following theme, which paraphrases Haycs-
Roth (1985): (1) expert system technology is determined to
be relevant to a product; (2) management provides an oppor-
tunity for action; (3) a preliminary business application is
assembled; (4) a knowledge engineering consultant verifies
the opportunity; (5) a knowledge engineering project team is
formed and assesses the knowledge; (6) the knowledge engi-
neering project manager plans the project; (7) the user orga-
nization supports the plan; (8) project management and cool -
dination are established; (9) the knowledge engineering
project team starts on the project; (10) periodic reviews and
reports track project progress and expectations; (11) pilot
testing occurs; (12) project enhancement and delivery rc-
quirements are defined; (13) project control transfers from
the knowledge engineering project team to the users; (14) the
project is assimilated into the organization as a result of

WINTER 1986 59

acceptance, reliability, and confidence; (15) development is
completed, and maintenance begins; and (16) new require-
ments and opportunities surface.

Steps l-5 are concerned with application selection; steps
6-12 deal with establishing the operational feasibility of the
expert system by building an operational specification (a
prototype). Steps 8-12 encompass the knowledge engineer-
ing tasks of the system. Steps 13-14 are concerned with inte-
grating the expert system into existing hardware and soft-
ware systems and into existing organizational practices.
Steps 15-16 handle rehosting, transporting, and maintaining
the final deliverable.

All of these steps were performed during the develop-
ment of OPGEN. Steps 1-12 were performed initially in
1982 and are discussed in Frail and Freedman (1984) and
Rauch-Hindin (1985). Steps 13-14 were completed last year
and are discussed in Freedman and Sylvester (1985). Steps
15-16 are discussed in Frail and Freedman (1986).

Selection of the Problem and Tools
In late 198 1, the Hazeltine Technical Planning Department
and the research laboratories were looking for a mechanism
to incorporate the new advances in knowledge-based tech-
nology into Hazeltine products. We decided that the best way
to learn how to incorporate this technology was to develop a
prototype system which would solve some practical prob-
lem. Our threefold approach was (1) to find the right kind of
problem, (2) to find the right kind of knowledge engineering
tools, and (3) to deliver the prototype expert system. This
approach corresponds to steps 1-12 in the methodology.

There were several requirements for a suitable problem-
solving domain, We were looking for a problem domain in
which there were several available experts who could solve a
particular problem in a few person-days using known proce-
dures (not necessarily formal) and experience. We did not
want our expert system to completely replace the human ex-
pert because we considered the development of such a sys-
tem infeasible. In addition, the results of such an expert sys-
tem might not be trusted by the human experts. We required
that our system be a job performance aid that would increase
the productivity of the human expert and would provide the
human expert with the ability to modify the conclusions of
the expert system. Ideally, the problem should be regarded
as time consuming and tedious by experts in order to assure
maximum user acceptance. We selected the domain of pro-
cess planning for the assembly of printed circuit boards. Our
experts would be industrial engineers.

Our next step was the selection of tools. In early 1982,
we believed that our process-planning expert system would
be based on rule-based productions, like several other plan-
ning expert systems that were known at the time (McDermott
1980). UCI-Lisp (an InterLisp subset) and MacLisp were
already installed on our DEC-10. We obtained the MacLisp
version of the OPS5 production system interpreter from

Charles Forgy (198 1) at Carnegie-Mellon University
(CMU).

The MacLisp version of OPS5 had some very important
features that we exploited later. This version allowed us to
define our own functions and right-hand-side actions. It also
provided important interfaces to the MacLisp environment.
This flexibility allowed us to extend our basic tool set.

Knowledge Engineering and Prototype
Implementation

We performed in-depth interviews with the industrial engi-
neering experts over a period of several months. The pur-
pose of these interviews was to determine what rules the ex-
perts used in writing operations sheets. These rules would
then be represented in OPS5. At this time, the difference
between this knowledge engineering activity and the system
analysis associated with conventional software engineering
practice became apparent to the experts and knowledge engi-
neers. The industrial engineers were accustomed to explain-
ing the requirements of an activity and expected a system
analyst to formulate a system specification that solved a
problem. They were not accustomed to constantly explain-
ing how they perform their activity and what “rules” they
used. This knowledge engineering activity, essentially con-
cerned with representing the cognition of the industrial engi-
neers in a knowledge-based formalism (such as produc-
tions), continually surfaced exceptions to previously elicited
rules. Sometimes, the industrial engineers were reluctant to
admit their ad hoc process-planning decisions. From the
knowledge engineering perspective, we were concerned that
the only way to fully understand the process-planning prob-
lem was to train the knowledge engineer in industrial engi-
neering or, vice versa, to train the industrial engineer in
Lisp-OPS5 programming.

The initial implementation of the expert system also
posed some practical problems regarding its use and interac-
tion with other computer systems. The bill of materials por-
tion of the input had to be obtained through a batch process in
which an IBM operator read the appropriate magnetic tape.
This tape was then given to a DEC-10 operator who wrote
the tape to a DEC-10 file. The file then had to be converted
from an EBCDIC format to ASCII format. This procedure
was necessary because no direct link between the business
and scientific computers was available at our installation.

Other significant problems concerned the representa-
tion of the geometric information on the layout diagram. We
determined that the only information in these diagrams rele-
vant to the preparation of operations sheets was the indica-
tion of simultaneous part installations. On the diagram, these
installations were shown as a series of interconnected cir-
cles. For example, if the physical layout diagram showed
item numbers 16, 17, and 23 linked together, these parts
were to be installed as a set. The knowledge engineers be-
lieved that a file containing these part sets could be generated

60 THE AI MAGAZINE

easily by an industrial engineer; the industrial engineer need
only be taught how to record these sets in a file (the setsjZe)
of a preestablished format using a text editor.

Another problem was the lack of consistent operations
sheet format conventions. Prior to this expert system effort,
each industrial engineer had developed a personal style for
formatting operations sheets. This personalization created a
lack of format consistency. The implementation of this ex-
pert system forced them to specify uniform formatting con-
ventions for their operations sheets. These conventions were
very important because the operations sheets were ultimately
read by assembly production people.

Operational Feasibility
In spite of the knowledge elicitation and system interface
problems, we felt that operational feasibility could be estab-
lished. Productions were encoded from the consistent and
well-defined planning rules, and in November 1982, a work-
ing prototype of the process-planning expert system was im-
plemented and reviewed. It was called the Hazeltine artifi-
cial intelligence laboratory-l (HAIL-l) and contained
approximately 80 OPS.5 productions and several pages of
external Lisp functions and user-defined actions.

HAIL- 1 productions encoded the installation sequence
of these parts using the “procedure-by-context” method
(described in detail later) to transfer flow control to different
sets of productions (a production set). Each production set,
averaging about six rules, was responsible for writing instal-
lation instructions for a single part name (for example,
“TRANSISTOR”). Included in each set were productions
to check for the existence of part instances in the input and to
transfer flow control to the next production set when no in-
stances were left.

How HAIL-1 Works
HAIL-l performed its process-planning task by reading the
bill of materials file and sets file input into its working mem-
ory and then transferring control to the first part installation
production set. Like other planning systems, HAIL-l used
the weak problem-solving method of match (as implemented
in the OPS5 interpreter) as its search strategy. Here, any part
instances in working memory matching a production in this
production set were removed from working memory after
installation instructions were written. Control was then
transferred to the next production set in the part assembly
sequence, which performed similarly. ‘HAIL- 1 continued in
this way until all production sets were “visited.” In the case
where the input contained no instances of a particular part,
the corresponding production set simply transferred control
to the next production set in the sequence without writing any
instructions. Although the HAIL-l part installation sequence
was “hard wired” (that is, could not be changed under pro-
gram control), this state was of no consequence because the
part installation sequence had a high degree of temporal sta-
bility .

HAIL-l contained eight production sets (about 50 pro-
ductions) that could plan the installation of about 40 parts.
(This number of parts is greater than the number of produc-
tion sets because different part instances often share the same
name. For example, there are several part instances named
“RESISTOR. “) The remaining productions performed user
interface functions.

HAIL-l was not a trivial system and was regarded by the
knowledge engineers as a demonstration of operational fea-
sibility. However, although the knowledge engineers con-
sidered HAIL- 1 usable, the industrial engineers did not. The
most important issue concerned the way that the bill of mate-
rials file was acquired. HAIL-l users found this process
awkward, frustrating, and time consuming. Some other is-
sues included the revision of the operation descriptions, the
addition of page numbers (with form feeds selected adap-
tively to improve readability), and the generation of a work
summary file describing all the operations for a particular
assembly.

Some of the errors uncovered included the incorrect se-
quencing of operations and the incorrect determination of
which parts were machine insertable and which were hand
insertable. The industrial engineers also insisted that the
HAIL-l knowledge base was inadequate for the job: More
knowledge about different parts and processes had to be pro-
vided.

The completion of the HAIL-l prototype also raised
certain management issues for the future. In December
1982, HAIL-l was a research vehicle under development by
the research laboratories for use by manufacturing and oper-
ations. If HAIL-l was to become a product, who would own
it, and who would maintain it? In addition, who would make
the decision to adopt HAIL-l as an industrial engineering
tool.

OPGEN: Expert System as Product
In early 1983, HAIL-l was not considered a finished prod-
uct. In order for HAIL-l to be regarded as a significant job
performance aid, we realized that the following improve-
ments needed to be implemented. The short-term improve-
ment was to expand the knowledge base. HAIL-l had the
process-planning knowledge that enabled it to write opera-
tions sheets for a small fraction of the total number of elec-
tronic parts which could be encountered in a typical printed
circuit board assembly. Additional knowledge engineering
was required to generate more rules to adequately cover ad-
ditional parts and processes in the problem-solving domain.

The intermediate-term improvement was to integrate
HAIL-l into other systems and practices. The system had to
be more fully integrated with the other computer systems
that made up the Hazeltine manufacturing control system in
order to improve the access to the bill of materials files.

The long-term improvement was to extend the problem-
solving domain. The industrial engineers wanted HAIL- 1 to
be extended to other process-planning activities involving

WINTER 1986 61

operations sheets. These extensions could be horizontal (ex-
tensions to similar process-planning tasks, such as printed
circuit fabrication, cable harnessing, and hybrid fabrication)
or vertical (extensions to more complex activities such as the
automated programming of a machine that inserts integrated
circuits).

The problem of increasing the knowledge base was re-
garded as crucial. However, it became apparent that even at
an estimated break-even point of one thousand productions
(at which point our time-shared DEC-10 would become
completely unusable), there still would be insufficient
knowledge about all the different types of components. We
also noted that very few industrial engineers have the instal-
lation knowledge of the approximately 50,000 different
parts. In a case where an industrial engineer encounters a
part for which no personal installation knowledge exists, the
engineer either consults with other experts or tries to find the
required information in the part manufacturer’s catalog. In
order to increase the HAIL- 1 knowledge base, we concluded
that the best approach was to simulate how an industrial engi-
neer learns about new part installation procedures and to au-
tomate this knowledge-acquisition mechanism within
HAIL- 1.

Our first attempt at automatic part installation knowl-
edge acquisition was based on a metarule approach in which
productions create and modify other production sets. Based
on the assumption that on the order of 1000 production sets
(at six productions per part) are required to represent the
installation knowledge associated with 50,000 parts, the im-
plementation would have to be capable of handling at least
6000 productions, a number well beyond our break-even
point (Execution time would also suffer because these addi-
tional capabilities would have to be controlled by the OPS5
interpreter, these capabilities could not be compiled.) A
greater technical problem was the implementation of a group
of productions that created new production sets. Synthesiz-
ing the proper antecedents and consequents under program
control turned out to be very cumbersome in OPS5. For
these reasons, we rejected the metarule approach as infeasi-
ble.

Because of the infeasibility of implementing the me-
tarule approach, to automate knowledge acquisition, we de-
veloped an efficient approach during fall 1983. We separated
the domain knowledge into productions and frames (sche-
mas). We decided to use the productions to specify general
planning knowledge associated with process planning and to
use frames to specify detailed operations specific to a part or
process (this knowledge could be represented hierarchi-
cally) The resulting system, renamed OPGEN, was demon-
strated in December 1983.

How OPGEN Works
As we added more production sets to HAIL- 1, we noticed
they were nearly identical except for certain information

about the specific part with which the production set was
associated. We generalized the production set by factoring
out the part-specific knowledge associated with each produc-
tion set and representing this knowledge in a way that was
easily accessed and modified. These last characteristics were
required for our proposed approach to an automated
knowledge-acquisition scheme. The representation we
chose to satisfy these requirements was frames.

Production memory was abstracted into two generic
production sets: one for single-part installation (5 produc-
tions) and one for set installation (about 10 productions).
This abstraction also eliminated knowledge of the part as-
sembly sequence from these productions. Because this
knowledge was also part-specific, it was thus represented in
the part-specific frame base.

The revised system also read the input files into working
memory, as HAIL-l did. However, each part, upon being
read, was assigned a time tag that indicated its relative order
in the part assembly sequence. This time tag was obtained by
using each part name as an index into an associative memory
(the *PART -+ TIME* frame in the part-specific knowledge
base). A time-tagged working memory element encapsulat-
ing all the part-specific information was then created for
each part; for example:

(part ^Item 13 -Name RESISTOR ̂ Prt RC707 -Qty 2 -Time 4).

To complete the system, control productions were
added to implement an internal “clock” loop. This loop
counted up from time one to the last installation time and
applied the generic part installation productions to the part-
specific working memory elements at each time step. In this
way, installation instructions for those parts with time tag t
were written at time t. (A partial production antecedent for
implementing this match is shown later.)

The most significant aspect of this hybrid production-
frame architecture was that it allowed us to implement an
efficient automated knowledge-acquisition mechanism. This
mechanism was triggered when a part’s time tag was nil,
indicating that it wasn’t instantiated in the part-specific
knowledge base. Control was then transferred to the
OPGEN knowledge-acquisition dialogue to permit the user
to instantiate a new slot in the “PART --$ TIME* frame.

This version of OPGEN writes operations sheets by fir-
ing productions that are sequenced by accessing instantiated
frames. In operation, OPGEN first parses the bill of materi-
als file (see figure 1) and the sets file obtained from the layout
diagram (see figure 2). OPGEN then associates the informa-
tion in the sets file and bill of materials file (for a given
printed circuit board assembly) with OPS5 working memory
elements. The part-specific knowledge contained in the
frames is also established in working memory. When
OPGEN encounters a part with an empty frame slot (an un-
known part), it asks the user to fill in a new slot. The OPGEN
knowledge-acquisition dialogue solicits the information nec-

62 THE AI MAGAZINE

essary to create a new slot with the new part installation
knowledge.

Figures 4-7 depict portions of this dialogue In figure 4,
OPGEN asks the user to identify the correct time slot for the
unknown part. Figure 5 shows OPGEN soliciting a descrip-
tion of how to install the unknown part (the operation de-
scription). This description gets instantiated as a slot in one (Strike Y for Yes and any other key for No)) y

* * * ” “) I have no knowledge of INY-CKT-PWR-GATE,
p/n 911264, item 6. Do you wish to instruct me
about this now, Rob?
(Strike Y for Yes and any orher key for No)) y

Strike ihc? Space 3ar when ready for mote information
Do you wish to see the part inset?ion time menu?

of the OPGEN frames.
If new knowledge is acquired during a process-planning

session, OPGEN allows the user to choose either permanent
retention or transient retention of this knowledge. Perma-
nent retention refers to the retention of the newly acquired
knowledge for this and all subsequent planning sessions.
Transient retention indicates that the newly acquired knowl-
edge is retained for this planning session only. This flexibil-
ity is important because of the dynamic nature of the knowl-
edge associated with our process-planning task domain. This
aspect of the dialogue is shown in figure 6.

Figure 7 shows an example of an OPGEN-generated op-
erations sheet. After writing operations sheets, OPGEN
writes a special page listing those parts for which it still has
no part installation knowledge. This listing is issued if the
user declines to tell OPGEN about an unknown part.
OPGEN also writes the work summary of all operations
specified on the generated operations sheets.

OPGEN: Expert System as a Component of an
Integrated Manufacturing System
By early 1984, most of the OPGEN knowledge engineering
problems were solved. We developed a user operations man-
ual (describing the preparation of OPGEN inputs and the
teaching of OPGEN about new installation procedures) and a
systems manual (describing how the OPGEN executable
files can be recreated from the source code files). These
manuals were written for users who are inexperienced in
computer programming or in DEC- 10 operations.

Other integration tasks were also performed. The inter-
face to the IBM computer was reconfigured. The bill of ma-
terials file was now obtained using a personal computer as an
intermediary: The file would be written from the IBM com-
puter to a floppy disk on the personal computer, translated
from EBCDIC to ASCII, and then written to the DEC-10.
This procedure was also somewhat awkward but was much
faster than the tape-transfer procedure.

OPGEN was used on an experimental basis starting in
July 1984. Most complaints about OPGEN during its initial
use were not concerned with its process planning The two
biggest complaints concerned the computer interfaces and
operations sheet editing. Because OPGEN was run from the
manufacturing facility (situated about 40 miles from the
main plant), the reliability of data transmission between
computers was dependent on the availability of good com-
munications links. A noisy link would corrupt the input file
and frustrate the OPGEN users.

Scan the following operation sequence for the number that
represents what a/an BNT-CM-PWR-GATE is either
installed with or ins&lied aMer:

(0 (PCS PC-BOARD BOARD-PRINTED-WIRING-
BOARD)

(1 (PRECISION-OP-AMPQUAD-NAND-GATE
N7400J-MICRO-CIRCUIT MICRO-CKT MICRO-ClRCUlf
INTEGRATED-CKTj

(2 (MACHINE-INSERTABLE)
(3 (T-AS PIVOT INSULATOR CONNECTOR CONNECTOR-

ASSY BRACKET BRACKET-ANGLE-&-SPACER
BRACKET-PIVOT)

Strike the Space Sar when ready for more info:mation Z

Figure 4. OPGEN Interactive Knowledge-Acquisition. Identi$cn-
tion sf Unknown Part.

Indicate by the appropriate number (followed by a carriage
return) what aian INT-CKT-PWR-GATE is either installed
with or instaited after: 11

Confirm: (I 1 (WAVE-SOLDER ACCORDANCE WITH
MIL-STD454 Requirement 5)) correct?
(Strike Y for Yes and any other key for No)] y

Is a/an INT-CKT-PWR-GATE instalied either With (strike Yj
or installed After (strike any other key} this part group or
operation:
(WAVE-SOLDER ACCORDANCE WITH MBL-STD-454
Requirement 5)] n

Confirm: After?
(Strike Y for Yes and any other key for No) > y

Do you wish to create an Operation Description for
this part?
(Strike Y for Yes and any other key for No)) y

Enter the Operation Description for INT-CKT-PWR-GATE,
p/n 911264, item 6, then strike Return:
) Please install the power gate with Sue’s Tweezers.

Confirm: Should the Operation Description say:
Please install the power gate with Sue’s Tweezers.
(Strike Y for Yes and any other key for No)] Z

Figure 5. OPGEN Intemctive Ktzowle~~e-Acqllisition. Filling in
Frame Slots.

The second complaint concerned “fine tuning” the op-
erations sheets generated by OPGEN. We believed that any
additional modifications to the operations sheets could be

WINTER 1986 63

” * * * *) I have no knowledge of INT-CKT-FLIP-FLOP, p/n
910704-2, item 35.

Do you wish to instruct me aboct this now. Rob?
(Strike Y for Yes and any other key for No)) n

St% examining the parts....

Do you wish to permanently record this new information
(B’ii save the old information too) we’%? discussed so far,
Rob?
(Strike Y for Yes and ar;y other key for No)] n

I’m re-examining the parts with this new information in
mind. This may take as long as sixty seconds, Rob.....

Please enter the Assembly Number, then Return) 123190

Now Please enter the Assembly Description, then Return
> My Easy OPGEN Demo Board

I wiIl now generate op sheets.....

--> Time 1 < - > Quit time 24
-> Time 2 < - > Quit time 24
10: Load Axial Lead Components Z

Figure 6. OPGEN Altermtives to Kmwledge Retention.

ASSEMGIY NO: 124323
DESCRIPTION: RF Control Board Assembly

OPER. WK. ITEM
NO. C-R NO, C2l-Y. OPERATION DESCRIPTION

50 902
(cont.)

14 1

65 2
49 2
59 2
73 1

14 5

17 5

13 4

16 4

63 8

16 8

Hand instali the foliowing
TWNSWORS as per figure ii

2N2219 TRANSlSTOR (note the polarity)
with:

the AN960C3 WASHER-FLAT
the MS35338-134 WASHER-LOCK
the MS519573 SCREW
the 340354 HEAT-SINK

2N2219 TRANSISTOR (note the polarity)
with:

the 670078 PAD

2N2222 TRANSISTOR (note the polarity)
with:

the 670099 PAD

2N2369A TRANSISTOR (note ihe
poiarity) with:

the G’OC99 PAD

Time ! c - > Quit time 24

Figure 7 Example of Operations Sheet Genetnted by OPGEN

accomplished easily by editing the OPGEN outputs. How-
ever, if the OPGEN users were unfamiliar with the resident
screen editor, this editing operation was also time consuming
and tedious. This problem was solved by creating command
procedures that would easily manipulate the operations sheet
data.

64 THE AI MAGAZINE

The Current Approach to OPGEN Development
In the following six subsections, we present a brief discus-
sion of the rehosting of OPGEN and the recoding of
OPGEN’s productions, the new OPGEN knowledge base ar-
chitecture, the implementation of OPGEN in Common Lisp
and how it works, and finally an evaluation of approaches to
OPGEN development.

The Rehosting of OPGEN
The availability of sophisticated development environments
enables iterative prototyping of production-based systems.
The high degree of interaction they provide permits a system
prototyping capability which is much more rapid than that
permitted by any conventional procedure-based, compiled-
language development environment. This rapid prototyping
capability is needed for demonstrating system feasibility.

However, in 1984 OPGEN was in the delivery stage of
expert system development. Its feasibility had been proven
sufficiently by its production-based ancestor, HAIL-l. In
addition, its viability as a prototype had been demonstrated
by its industrial engineering users over a 12-month period; it
had been in everyday use as a commercial product within a
Hazeltine manufacturing facility for 15 months.

As a result of this experience, the OPGEN production
base was well understood: It was thoroughly debugged and
remained of fixed size over time, independent of any knowl-
edge acquired by its frame base. (The OPGEN frame base
more than doubled in size as its users directly provided new
part-specific knowledge, without any intervention from
knowledge engineers.) Consequently, the OPGEN produc-
tion system representation had outlived its usefulness be-
cause its planning task was well understood, and an opera-
tional specification had been developed. Most of OPGEN
was already coded in MacLisp. Because of these factors and
the potential increase in maintainability and transportability,
we undertook the task of recoding the OPGEN production
system rule base in Common Lisp. Our rehosting goal was to
keep the OPGEN artificial intelligence-based knowledge
representations and problem-solving methods and remove
the artificial intelligence (AI) development tool (OPS5). In
practice, this rehosting was accomplished without any
change to the OPGEN inputs, outputs, and knowledge-
acquisition dialogue (see figures 4-7).

Rehosting was also necessary for integrating OPGEN
into other factory automation facilities. As observed in
Freedman and Sylvester (1985), Fox (1983), and Frail and
Freedman (1984)) the integration of an expert system within
the techno-cultural milieu of the user is important for the
realization of any projected cost reduction.

As part of a factory integration plan, OPGEN was inte-
grated into the Hazeltine manufacturing control system
(Freedman and Sylvester 1985) in November 1985. OPGEN
was rehosted from its DEC-IO/TOPS-10 environment to a
VAXIVMS environment. This was done as part of an exper-

imental factory automation program-the material storage,
transfer, entry, and routing system (MASTERS)-
sponsored by the U. S. Air Force. The goal of the MAS-
TERS program is to automate the manufacturing processes
of selected Air Force contractors in order to reduce the cost
of Air Force procurements.

The Recoding of OPGEN Productions
The DEC-10 version of OPGEN employed the MacLisp-
based OPS5 production system to represent general knowl-
edge of printed circuit assembly and frames to represent
part-specific knowledge. The productions contained many
calls to supplementary MacLisp functions. For example, the
following production excerpt from the OPGEN rule base
contains a call to the Lisp function TIME-OF:

(P ASSIGN-TIME-TAG
(context-assign-time-tag)
(part -Item <ir -Name <nz -Prt <pz -Time nil)

- (set <gz set-item ii> set-qty <q>)

(remove 1)
(make context-unknown-part?)
(modify 2 -Time ($value (TIME-OF <nnz <p>)))) .

The final version of OPGEN had a rule base of 62 rules
that made 31 calls to external Lisp routines (including both
functions and user-defined actions) and had a frame base
which grew to contain knowledge of 115 parts. One problem
that surfaced during the rehosting was maintaining the com-
munication between OPS5 and Lisp.

During tests of Common Lisp and OPS5 for VAX, we
discovered that communication between the two was possi-
ble only through an intermediate language (for example,
FORTRAN), the VMS mail utility, or some combination of
the two. We rejected this approach when we read in the
“VAX Lisp User’s Guide” (1984) that “programs written
in other VAX languages cannot call VAX Lisp routines.”
DEC confirmed that this meant OPS5. The VMS mailbox
approach was rejected because it was too system dependent.

Another proposed solution to this communication prob-
lem was to bypass the issue altogether and rewrite the OPS5
rules in Lisp, making the system entirely Lisp based. This
would eliminate the inefficiency of running interpreted
OPS5 (OPS5 for DEC-10 can’t be compiled; OPS5 for VAX
can) and increase OPGEN transportability to other Common
Lisp installations. Coincidentally, this task had previously
been considered for the DEC-10 version of OPGEN in order
to reduce OPGEN execution time.

The New OPGEN Knowledge Base Architecture
Many existing industrial rule-based expert systems use rules
exclusively to represent all types of knowledge. OPGEN
knowledge was partitioned into separate representations, as
described earlier, in order to implement an efficient
knowledge-acquisition process. Because new rules are diffi-

cult to generate under program control, we factored OPGEN
dynamic, part-specific knowledge out of its rule base and
represented it in a way most amenable to the required modifi-
cations. The result was a system of hybrid architecture
whose part-specific knowledge base grew as it acquired new
manufacturing knowledge but whose rule base size was inde-
pendent of any part-specific knowledge and thus remained
constant over time. The decision to recode the OPGEN rule
base in Lisp was made easier by the distributed architecture
of the knowledge base.

This decision was also made easier by the fact that dur-
ing any execution of OPGEN, the flow of control within its
rule base passed through groupings of functionally related
rules in a fixed sequence. The production-based engineering
technique that we call procedure by context is used to enforce
a certain flow of control through the productions. This tech-
nique is also common to many rule-based expert system de-
velopment tools (for example, “salience” in ART [Rauch-
Hindin 19851). A similar technique is also discussed in
Brownston et al (1985). In the simplest implementation of
the technique, each production is given an antecedent that
must match the current “context,” where a context is a spe-
cial element in working memory that denotes some step in a
procedure (for example, “install electrical components’ ‘).
Each grouping of productions related to the same step speci-
fies the same context antecedent. Every production in a
grouping which could possibly be the last to fire within that
grouping is responsible for changing the current context to
the next context in the sequence. (A failure to change con-
texts is often the cause of infinite loops in production sys-
tems.) The production shown earlier illustrates the use of the
technique to move from one context (context-assign-time-
tag) to another (context-unknown-part?). In this way, rule-
based procedures are implemented. For example, the
OPGEN steps (contexts) for installing sets of parts are
roughly (1) read sets, (2) identify set leaders, (3) time tag set
leaders, (4) install a set leader, and (5) install remainder of
set.

Associated with each of these contexts was an average of
four productions. Some production groupings were written
such that the action denoted by the context name could be
iterated as required, thus forming a local loop. In addition,
the procedure-by-context technique was used to iterate on a
more global level over contexts four and five combined, as
required.

In spite of the procedural nature of most rule-based sys-
tems, rules are fast becoming the knowledge representation
of the masses (Chandrasekaran 1985). Production systems
are generally more suitable for exploratory and iterative pro-
totyping than for procedure-based development systems.
This is in part due to the well-publicized modular nature of
productions as “independent pieces of knowledge” that can
be added easily to the knowledge base (Barr and Feigenbaum
1983). However, this independence is overrated when one
considers that every production added usually has to be

WINTER 1986 65

“spliced” into its proper context. Bugs in production sys-
tems are often caused by productions firing “out of con-
text.” In a system of more than a few hundred productions,
knowledge maintenance becomes increasingly difficult be-
cause of the relative loss of modularity. As Georgeff (1982)
observed, this technique obscures the representation of flow-
control information in production systems, causing a de-
crease in potential extensibility and maintainability.

The implementation of OPGEN in Common Lisp

OPGEN productions exhibited a well-defined procedural
nature despite the fact that its control flow was obscured by
its distribution among production antecedents and working
memory. Because of this, the representation of OPGEN
flow-control knowledge in a procedural representation was
fairly straightforward. The most interesting aspect of this
task was representing the OPS5 working memory elements
of production-based OPGEN in Common Lisp. Global vari-
ables and constants were used to represent unstructured data,
such as the current time, the current operation number, and
the user’s name. For structured data, we implemented a rep-
resentation called transientframes, frames,(in the form of a-
lists) that are dynamically created, used, and then discarded
during a run of OPGEN.For example, part information in
the OPS5 working memory was represented as follows, one
for each part:

(PART^Itemxi> ^Namexn> -Number<no> ̂ Quantityxq> -Time
a).

Such a representation, combined with the pattern match-
ing performed during the recognize-act cycle of the OPS5
interpreter, provided an easy way to access part attributes
using any other part attribute as the key. For example, to find
the item numbers and quantities of those parts whose inser-
tion time is the current time, the antecedent of a production
specified the following condition elements:

(PART -Item 4s -Quantity <q> -Time &z)
(CURRENT-TIME 4) .

To find the names and numbers of those parts having
different insertion times and different item numbers, one
could specify:

(PART -Name az -Number <no> -Time <tlz ^ Item 41s)
(PART -Name xnz -Number <no>

-Time (42s + 4lz) -Item {42* + 41s }).

These examples show the access requirements of the
data structures within OPGEN productions. These access re-
quirements were satisfied in Common Lisp with the use of
transient frames. For example, to find the item numbers and
quantities of those parts whose insertion time is the current
time, OPGEN (after reading the parts file) first creates the
transient frame *TIME -+ ITEM-QTY*, which maps part
insertion times to part item numbers and part quantities. This
frame is created using the permanent frame *PART 4
TIME* (in the part-specific knowledge base referred to ear-

lier) to obtain a part’s insertion time. The current time would
then be used as a search key into the *TIME + ITEM-QTY*
frame to collect the item numbers and quantities of those
parts whose insertion time is the current time. Similar tran-
sient frames of the a-list type were used to represent relations
between other part and insertion time attributes. The entity-
relationship model of data (Ullman 1980) was used to design
the particular frame schemes that satisfied OPGEN Common
Lisp-based data-access requirements. We considered imple-
menting transient frames with structures as an alternative to
a-lists. However, structures were rejected for two reasons:
(1) associative memories provided more appropriate and ef-
ficient data access and (2) the overhead from the creation of
the slot constructing, slot accessing and slot assignment
macros associated with the structures was greater than the
overhead incurred in creating the a-lists.

How the Current OPGEN Implementation Works
The Common Lisp-based version of OPGEN performs the
printed circuit board assembly planning task in exactly the
same way that production-based OPGEN performs the task.
Its inputs and outputs are identical (notwithstanding exten-
sions to the new version). All parts are time tagged upon
input. Unknown parts trigger the same knowledge-
acquisition dialogue. (The knowledge-acquisition dialogue
required no changes because the part-specific knowledge
base that it modifies remained unchanged.) Its clock loop
(implemented in terms of OPS5 productions in the previous
version) was reimplemented in Lisp. As in the production
system version, match was employed by the clock to deter-
mine the installation time of part instances.

The only significant difference between the two ver-
sions is the large gain in system maintainability. This gain
resulted from the appropriate representation choice for the
procedural knowledge.

An Evaluation of the Approaches to OPGEN
Development
The VAX Lisp-based version of OPGEN was installed on a
VAX/ 1 l-750 in March 1986 after three person-months of
work. This version is 100% compiled Common Lisp. Two-
thirds of the DEC-10 version consisted of MacLisp forms
that implemented general utilities and frame-manipulation
functions (these were compiled); the remaining one-third of
the system consisted of OPS5 productions that implemented
the general planning productions. These productions were
written in 882 lines of OPS5; it was rewritten in 441 lines of
Common Lisp. Table 1 compares various parameters of
three versions of OPGEN. When taken together, these three
versions span three distinct evolutionary stages of expert
system development (feasibility, prototype,and commercial
product).

HAIL-l represents the system in its feasibility stage.
OPGEN-P (for production based) represents the system in

66 THE AI MAGAZINE

Table 1. Comparison of Different Implementations of OPGEN.

HAIL-l OPGEN-P OPGEN-L
Stage Feasibility Prototype/Product Product
Period I i 182-9183 9ia3-3186 3/66-present
Rules 86 62 0
% Rules a0 33 0
% LISP 20 67 100
Parts Known 30 44-115 115
Knowledge
Acquisition
Ability? yes yes
Run Time (set) 15 90 45

both the prototype and commercial product stages. OPGEN-
L (for Common Lisp based) represents the system in the
commercial product stage.

Run times indicate the approximate time for a particular
version to generate operations sheets for a test file of 44
known components (consisting of 28 distinct parts). No
knowledge acquisition was necessary. As the system pro-
gressed to a totally Lisp-based implementation, the run time
decreased. This decrease must be attributed to the noncom-
pilability of the DEC-10 OPS5 productions rather than to the
production-based representation itself.

The Al in OPGEN

In the following three subsections we present a brief discus-
sion of the pragmatics and the AI aspects of OPGEN knowl-
edge representation, and new observations in expert system
development methodology.

Pragmatics
OPGEN evolved from an implementation dependent on a
knowledge engineering tool to an implementation indepen-
dent of tools. The architecture of its knowledge base also
evolved from a rule-based production system representation
to a multiple representation consisting of productions and
frames to a procedure- and frame-based representation (im-
plemented entirely in Common Lisp). OPGEN has been in
use for planning the assembly of over 90% of the new printed
circuit boards at Hazeltine and will be used for a major pro-
duction run during the manufacture of the Hazeltine micro-
wave landing system for the Federal Aviation Administra-
tion. Figure 8 shows a diagram of the OPGEN current
knowledge flow.

The Al Aspects of OPGEN Knowledge
Representation
The decomposition of OPGEN knowledge into a hybrid or-
ganization that separates general planning knowledge and
part-specific knowledge has several benefits. One of the
most significant benefits stems from the observation that the
general planning knowledge base can be applied to any plan-

Figure 8. OPGEN Knowledge Flow.

ning process for which an operation-specific knowledge base
is constructed. For example, an expert system for hybrid
circuit fabrication can be configured by conjoining the gen-
eral planning knowledge base with an operation-specific
knowledge base containing knowledge of the operations in-
volved in the fabrication of hybrid circuits. In this sense,
OPGEN can be considered a generic process-planning sys-
tem.

Another major AI aspect of OPGEN modular knowl-
edge representations pertains to knowledge acquisition. By
separating the operation-specific knowledge from the gen-
eral planning knowledge base (and representing it in a way
that is more amenable to modification), we implemented an
efficient mechanism for acquiring operation-specific knowl-
edge directly from the OPGEN user. This knowledge-
acquisition mechanism is executed under the control of the
general planning knowledge base.

Given the OPGEN knowledge-acquisition mechanism,
it is possible for OPGEN to learn new part installation
knowledge “from scratch. ” This ability can be demon-
strated by applying the general planning knowledge base to a
tabula rasa (Locke 1690)) an empty part-specific knowledge
base. This is the extreme case in which all parts on a parts list
are unknown.

Expert System Development Methodology:
Some New Observations
Our experience in developing OPGEN led to the following
observations and guidelines concerned with delivering
knowledge-based systems. If knowledge-based systems are
engineered with these guidelines in mind, we believe that
expert system life-cycle management will be easier.

Observation 1: Delivery of an expert system should be
considered in the earliest stage of development.

Guideline: The decision about when prototyping, feasi-
bility, and knowledge engineering end and where system de-
livery and maintenance begin is the most important and per-

WINTER 1986 67

haps the most difficult step in the evolution of the expert
system product (Polit 1985). A robust knowledge architec-
ture should be specified as early as possible in order to ad-
dress the issues involved in integrating and rehosting a final
deliverable.

Observation 2: Proper knowledge elicitation requires
the utmost tact and diplomacy because defensive reactions
and feelings of inadequacy can potentially be invoked in the
experts.

Guideline: Several factors create tension and defensive-
ness during knowledge elicitation interviews of experts. Per-
haps the greatest factor is the fear that they will be replaced
by a machine. We avoided this issue by choosing to automate
a task that the experts were glad to relinquish. Another factor
concerns the fear of inadequacy felt by the assigned experts.
The process of knowledge elicitation usually forces the ex-
perts to think about their jobs at a previously unconsidered
level of detail. This can create feelings of inadequacy that
invoke defensive or less than candid responses.

We recommend not referring to experts as experts. Such
a label implies a responsibility that makes many people feel
uncomfortable. It tends to create (in the assigned experts) the
expectation that they must know all answers immediately. In
reality, some expert knowledge might be hard to recall be-
cause it is seldom used or might simply be unknown to a
particular expert. One might argue that such people are not
real experts. During the evolution of OPGEN, we were for-
tunate enough to have experts who were usually certain of
their knowledge-even when it conflicted with their col-
leagues’ knowledge.

Observation 3: Production rules are useful for rapidly
prototyping a small system for the purpose of demonstrating
feasibility.

Guideline: After the feasibility stage, productions are
useful for representing static knowledge; other representa-
tions should be considered at this point for the representation
of dynamic knowledge. A proper design should emphasize
the functional decomposition of knowledge and then the
choice of appropriate representations. Representation choice
should also be influenced by requirements of interoperabil-
ity, codability, modifiability, understandability, maintaina-
bility , and transportability.

Observation 4: Adding productions does not necessar-
ily improve an expert system.

Guideline: Our experience with OPGEN taught us that
productions are a poor way to represent knowledge which is
intended to grow. Yet, the pervasive impression is that the
more productions, the better. In fact, the constant need to
update a production base often indicates a severe mismatch
between the knowledge representation choice and the knowl-
edge representation task. The increase in domain knowledge
as a result of addition to a production base is accompanied by
a disproportionate decrease in system understandability and
maintainability. The acquisition of new domain knowledge

by humans usually improves their problem-solving ability;
this is not yet universally true for rule-based expert systems.

In addition, although production-based development
tools sometimes provide a metarule capability, production-
based knowledge is not generally context-free, as we pointed
out earlier. As we discovered with HAIL- 1, even in the sim-
plest cases there is much overhead involved in determining
what context a potential new production should fire in, what
contexts it should make and remove, what other condition
elements are required, and what other actions should be
taken. Similar guidelines (based on the XCON experience)
are found in Van de Brug, Bachant, and McDermott (1985).

Observation 5: If an expert system product has success-
fully been used to solve problems in several separate but sim-
ilar domains, then it might be cost effective to transform that
system into a shell.

Guideline: OPGEN contains general planning knowl-
edge of sequences associated with the generation of opera-
tions sheets. It is possible to generalize it to sequence any
type of entity associated with the generation of operations
sheets, given the appropriate task-specific knowledge base.
Such an operations sheet planning shell, in conjunction with
a task-specific knowledge base editing facility, would permit
users to create their own modular task-specific knowledge
bases. The users of such systems would then become solely
responsible for their knowledge base content.

This task is currently being considered in the case of
OPGEN. In the degenerate case where the OPGEN part-
specific knowledge base is empty, all parts in an input file are
flagged as unknown (the case of the tabda rasa discussed
earlier). In this situation, the industrial engineer is able to
“bootstrap” the system by directly providing all installation
knowledge.

Observation 6: These questions might arise: Is the final
deliverable system still an expert system? Is it still AI?

Guideline: From the perspective of the person imple-
menting the system, to say it no longer is AI is to say either
that the designation depends upon the implementation or that
the implementation makes the system. If this were true, we
could write an OPS5 program to compute factorials and call
it an expert factorial system. Moreover, an expert system
can be implemented with any tool: As long as the expert
system exploits explicit AI knowledge representations and
problem-solving methods, it should be regarded as an appli-
cation of AI technology. Even though OPGEN is not cur-
rently implemented in terms of AI tools, it is still based on
the AI knowledge representation of frames and still utilizes
match as a problem-solving method. In some respects, this
issue, which Chandrasekaran (1985) calls “the computa-
tional universality of representation languages” (such as
OPS5 or other expert system building tools) typically causes
expert systems to “lose perspicuity of representation.”

From the perspective of the user, it is irrelevant to the
users (at system delivery time) whether their problem-
solving system was prototyped using an expert system devel-

68 THE AI MAGAZINE

opment tool. However, their system might never have been
implemented (or delivered on time) if an operational specifi-
cation was not demonstrated by knowledge engineers using
expert system building tools or AI knowledge representa-
tions and problem-solving methods.

The Status of OPGEN Today
In these final three subsections we will present a brief discus-
sion of the current status of OPGEN, including the use of
OPGEN to help solve a new automatic programming prob-
lem and the OPGEN integration scheme.

A Vertical Extension to OPGEN
As the feasibility of knowledge-based systems is demon-
strated, extensibility of these systems becomes important.
OPGEN was extended in the last year to generate the instruc-
tions needed to program a dual in-line package (DIP) inser-
tion machine. This machine automatically inserts DIPS into
sockets on printed circuit boards. Prior to this extension,
OPGEN listed on an operations sheet those parts which were
insertable by this machine.

The New Problem: The Automatic Programming
of the DIP Insertion
One of Hazeltine’s manufacturing facilities houses an Amis-
tar Cl-1800 automatic DIP insertion machine (DIM). This
machine must be programmed to insert a sequence of DIPS
into a corresponding sequence of socket locations on a
printed circuit board. Because different boards contain dif-
ferent DIPS and DIP locations, the machine must be pro-
grammed for each different board that it processes. DIM is
normally programmed by an industrial engineer. In order to
subsume this programming task, OPGEN was programmed
to emulate the activities of the industrial engineer. The in-
dustrial engineer uses a layout drawing of the printed circuit
board under construction to generate a DIP insertion pro-
gram. From this drawing and from other knowledge, the en-
gineer determines the sequence of DIP insertion locations
and the corresponding DIP input sequence to the machine.
These two items constitute the DIP insertion program and
are respectively documented by the industrial engineer as the
programming sheet and the chute loading sheet.

The layout drawing provides necessary but insufficient
programming information. The “other knowledge” is of
two types. The first type is part-specific and machine-
specific knowledge that is used by the industrial engineer to
determine which DIPS are insertable by the machine. This
knowledge is acquired from instruction, user manuals, and
experience. By looking at the DIP part numbers for an as-
sembly, the industrial engineer determines which DIPS are
machine insertable based on DIP size and the number of DIP
legs. The second type of knowledge specifies the sequence of
DIP insertion locations on the printed circuit board. This
information comes from a CAD system and is ported to the

Figure 9. OPGENtntegmtion.

OPGEN host by magnetic tape. Once all this information is
collected for a particular printed circuit board, it takes a typi-
cal industrial engineer four hours to produce the program-
ming sheet and the chute loading sheet. OPGEN has been
extended to generate the programming sheet and the chute
loading sheet from similar input used by the industrial engi-
neer .

Current Integration Scheme
OPGEN exists on several computers. It is currently main-
tained (in Common Lisp) by the Hazeltine research laborato-
ries on Theaetetus, a Symbolics 3600. Configuration control
is managed both on the Symbolics and on a VAX/l l-782.
OPGEN executes on the VAX/II-750 that belongs to the
Hazeltine manufacturing facility. The current OPGEN sys-
tem integration with the manufacturing control system is
shown in figure 9.

Acknowledgments

We wish to acknowledge the following individuals who
played significant roles in the development of OPGEN:
Dave Martin, Bill Sylvester, and Ed Stork (experts); Paul
Sakson and Jesse Karp (technical planning); Ray Masak,
Randy Cope, and Sal Nuzzo (management); and Rod
Rinkus, Andrew Shooman, and Jeff Rosenking (implemen-
tation). We also wish to thank Andrew Shooman for his help
in reviewing the manuscript.

References

Bachant, J , and McDermott, J. 1984 Rl Revisited: Four Yeals in the
Trenches AIMngazine 5(3): 21-32

WINTER 1986 69

Barr, A , and Feigenbaum, E. A. 1983 The Handbook of Artificial
Intelligence, Volume 1. Los Altos, Calif : William Kaufmann, 193

Brownston, L.; Fattell, R ; Kant, E ; and Martin, N. 1985. Programming
Expe?t Systems in 02% Reading, Mass : Addison-Wesley, 201

Chandrasekaran, B. 1985 Generic Tasks in Knowledge-Based Reasoning:
Expel t Systems at the Right Level of Abstraction Paper presented at
IEEE Expet t Systems in Government Symposium, 62-65

Forgy, C 1981 OPS5 User’s Manual Technical Report, CMU-CS-81-
135, Dept of Computer Science, Carnegie-Mellon Univ

Fox, M. 1983. ISIS: A Consttaint-Dhected Reasoning Approach to Job
Shop Scheduling. Technical Repott, The Robotics Institute, Carnegie-
Mellon Univ

Frail, R., and Freedman, R 1986 OPGEN Revisited: Some
Methodological Observations on the Delivery of Expert Systems Paper
presented at IEEE Expert Systems in Government Symposium
(forthcoming)

Frail, R , and Freedman, R 1984. Increasing Support Lab01 Productivity:
Artificial Intelligence Applied to Process Planning Conference on
Simulation and Training Technology for Increased Military Systems
Effectiveness, Society for Applied Learning Technology, 52-56.

Freedman, R , and Sylvester, W. 1985 The Evolution of an Exper t System
for Process Planning Paper presented at IEEE Expet t Systems in
Government Symposium, 328-334.

Georgeff, M P. 1982. Piocedm al Control in Production Systems At ti&ial
Intelligence 18(2): 179

Hayes-Roth, F 1985 Engineering Systems of Knowledge: The Great
Adventure Ahead. Paper presented at IEEE Expert Systems in
Government Symposium, 678-692.

Locke, J. S. Essay Concerning Human Understanding. Reprint in
Everyman’sLibrary Book II, ed John Yolton, Chapter I London: J M
Dent & Sons.

McDermott, J 1980. Rl: An Expert in the Computer Systems Domain. In
Proceedings of the First National Conference of the American
Association for Artificial Intelligence, 269-271

Polit, S 1985 Rl and Beyond: AI Technology Transfer at DEC AI
Magazine 5(4): 76-18.

Rauch-Hindin, W. 1985 Artificial Intelligence in Business, Science, and
Zndztstrv, Volume N Engelwood Cliffs, N.J.: Prentice-Hall.

Ullman, J 1980. Principles of Database ,Systems Potomac, Md.:
Compute1 Science.

Van de Brug, A ; Bachant, J ; and McDermott, J 1985 Doing Rl with
Style Second IEEE Conference on Artificial Intelligence Applications,
244-249

VAX Lisp User’s Guide, 1984 Technical Report AA-Y921A-TE, Digital
Equipment Corporation

The AAAI solicits your assistance in nominating
individuals to the positions of President-elect and
Councilor. Elections for these officers will occur in

May of 1987. Please submit your nominations to the
following address:

Woodrow Bledsoe, Chair
Nominations Committee

AAAI
445 Burgess Drive

Menlo Park, California 94025-3496

70 THE AI MAGAZINE

Call for Workshop Program

The AAAI has supported small workshops for
the last several years. This support includes

publicity, printing, office help, and subsidies
for other expenses. $5 ,OOO.OO is a typical

subsidy, but up to $lO,OOO.OO may be
considered. Any topic in AI science or

technology is appropriate. Anyone may
volunteer to organize a workshop on any

topic. The organizer(s) should determine the
topic, the date, the site, and the procedure

for selecting papers and attendees. S/he
shpuld also decide whether preprints should

be distributed.

Proposals for scientific workshops should be
made to:

Professor John McCarthy
Computer Science Department

Stanford University
Stanford, California 94305

(4 15) 497-4430
jmc@su-ai.arpa

For workshops on applied topics,
applications should be made to:

Dr. Peter Hart
Syntelligence
P 0. Box 5620

Sunnyvale, CA 94088
(408) 745-6666

hart@sri-ai

AAAI proposes that program committees give
special consideration to papers that have
been presented at workshops in choosing
invited speakers for national conferences.

AAAI-87 EXHIBIT PROGRAM
THE AAAI-87 EXHIBITPROGRAMWILLBEHELD 14-
16 JULY 1987 ATTHESEATTLECENTERCOLISIEM,
SEATTLE,~ASHINGTON

COMPANIESORUNIVERSITIESINTERESTEDIN
EXHIBITINGATTHISYEAR'SNATIONAL
CONFERENCEONARTIFICIALINTELLIGENCECAN
OBTAININFORMATIONANDAPPLICATIONFORMS
FROM:

Mr. Steven Taglio
AAAI
445 Burgess Drive
Menlo Park, CA 94025-3496

