
the system should at
least implicitly con-
tain a model of its
users. The user’s
model will define
what the system is
expected to do in
terms of user expec-
tations. The system’s
user model, first by
anticipating and
later by recognizing
the knowledge and

motivation in the user, will be able to
respond appropriately to perceived levels of
user ability. Early user models in the literature
tend to cite a one-dimensional range of user
expertise, from beginner to expert (Shneider-
man 1979; Schneider, Wexelblat, and Jende
1979). Such a model is simplistic in that after
some experience, users tend to be expert in
some features and novice in others. Casual or
occasional users are difficult to include in a
model. They tend to move from (apparently)
novice to expert level in a few interactions,
then repeat this process the next session.

With expert systems, problems of user
modeling and interface design are com-
pounded. A user can be experienced in the
problem domain but naive with respect to
the system or computers in general. Domain
knowledge can be subjective, based on the
expertise of a single expert. It can even con-
tain subtle inconsistencies, reflecting valid
differences of opinion among experts. An
expert system tends to be brittle: In a limited
domain of applicability it works well, but out-
side the domain it doesn’t work at all. It is
difficult for the user—expert or novice—to
keep the bounds of the domain in mind at all
times. In fact, users expect more from an

The user interface to
a software system
can spell the differ-
ence between suc-
cess and failure.
Sometimes, function
does not seem to
count. If the pro-
gram does a good
enough job, if the
users see an easy to
use, easy to learn,
helpful, pleasant
interface, they love it. The interface might be
the most significant sales aspect of a software
product (consider the spate of look-and-feel
lawsuits!). This wasn’t always the situation. In
the early days of online computing, users
were so happy to have something that they
accepted almost anything. Many of today’s AI
systems implicitly exploit this phenomenon.
The novelty of the expert system shelters
poor human factors (as does the fact that
many users of today’s expert systems have
been intimately involved in their creation). It
is still the case in some—though not
all—application domains that people are so
pleased to have a working expert system they
accept aggravation in its learning and use.
The media hype that surrounds AI in any
form has added snob value to having an
expert system. As the novelty continues to
wear off and the expert system loses its snob
value, normal measures of usability will
apply. Developers who do an inadequate job
of design will have less than satisfactory
acceptance.

Users have implicit models of a system and
designers must acknowledge these subjective
models in the interface design. If the system
is to behave properly across a range of users,

Articles

66 AI MAGAZINE

On Interface Requirements
for Expert Systems

Richard L. Wexelblat

The user interface to an expert system shares
many design objectives and methods with the
interface to a computer system of any sort. Nev-
ertheless, significant aspects of behavior and
user expectation are peculiar to expert systems
and their users. These considerations are dis-
cussed here with examples from an actual
system. Guidelines for the behavior of expert sys-
tems and the responsibility of designers to their
users are proposed. Simplicity is highly recom-
mended. Entia non sunt multiplicanda praeter
necessitatem.1

0738-4602/89/$3.50 ©1989 AAAI

AI Magazine Volume 10 Number 3 (1989) (© AAAI)

expert system than from a conventional com-
puter program, but their expectations are
harder to model. By its nature, an expert
system has fewer constraints on input and
output, and users tend to be unsure of the
limits; so, more sorts of user assistance are
needed. Furthermore, the domain of applica-
bility and the limits on this domain are
harder for a user to understand.

Because the nature of an expert system is to
allow (controlled) imprecision, it is impossi-
ble to take advantage of the sorts of data or
syntax checking that one would find in, say, a
payroll program or BASIC interpreter. More-
over, the nature of an expert system leads to
the need for more than one interface. Differ-
ent classes of users require significantly differ-
ent sorts of interactions.

Interfaces to expert systems are beginning
to be addressed (Carroll and McKendree 1987;
British Computer Society Workshop on
People and Computers: Designing the Inter-
face, Cambridge, U.K., 17–20 September
1985), but the current literature tends to be
anecdotal in nature and to reflect subjective
value judgments. Unfortunately, little hard
data exist to confirm the body of opinion in
interface design. This article is similar in
nature but reflects my experience of more
than three decades of designing and thinking
about user interfaces. It represents as many
years of working with computers, mostly in
positions where I had little control over the
interface. Although subjective in approach,
this article attempts to discuss criteria,
models, and guidelines in a way that can be
understood and applied by system designers
who do not necessarily share my definitions.
Where opinion is backed by evidence, details
are cited. For the rest, I hope that the opinion
appeals to designers of future systems. Those
interested in surveying the literature should
begin with Ben Shneiderman’s (1987) latest
book. Other helpful material can be found in
the references.

How Are Expert Systems Used?
An expert system is a computer program. As
with any computer program, it can be applied
where appropriate. Consider an expert system
for the diagnosis and repair of electronic
equipment. It can run on a large central com-
puter, and technicians in the field can call in
to ask questions of an operator when a diffi-
cult problem arises. At the other extreme, the
diagnostic system can be embedded in the
equipment with its own processor, monitor-
ing the equipment as it runs, diagnosing

problems when it fails. Another scenario for
diagnosis is the portable system carried into
the field and plugged into the target equip-
ment for preventive or diagnostic maintenance.

The design of the user interface for an
expert system will depend on the operating
environment and the qualifications of the
user. It is necessary to choose the computer
on which to implement the diagnostic system
and to see if signals can be read automatically
from the target equipment or if a human is
needed to transfer the information. Although
modern electronic systems are usually instru-
mented for automatic reading of internal
values, mechanical and optical systems or
subsystems typically won’t have this ability.
An amazing number of free variables relate to
diagnostic expert systems. For example, the
system to be diagnosed can be uninstrument-
ed, partly instrumented, or fully instrument-
ed. The diagnostic system can operate
autonomously or with an operator or an
external control computer. It can be imple-
mented on a mainframe, workstation,
portable computer, or hybrid (for example,
personal computer´modem´workstation). The
diagnostic system can be embedded in equip-
ment under test, on site plugged into equip-
ment under test, on site as a stand-alone
system, portable carried to the site, remote
connected to equipment under test through a
modem or network, or remote as a stand-
alone system.

Expert systems today are implemented in
almost all combinations of these modes. At
least for the next few years, the advantage of
the power of the mainframe must be balanced
against the convenience of portability. In
diagnosis, for example, the graphics capabili-
ty of a (non-portable) workstation must be
weighed against the value of an embedded
capability. The difference between the work-
station and the personal computer is not
completely clear today, and the boundary—if
any—is becoming more vague. For purposes
of this discussion, differentiation is made
between workstation and portable computer.
Portable does not, however, imply
lightweight. Until a powerful, lightweight
computer with good gray-scale graphics

Articles

FALL 1989 67

The media hype that
surrounds AI in any form
has added snob value to
having an expert system.

depending on the contents. An unused
window does not appear, and temporary win-
dows can cover parts of other windows.
Avoiding use of the keyboard was a deliberate
design decision, although a few exceptions,
such as having the user enter a name or iden-
tification at the beginning of the session, do
exist. The sample screens were chosen to
illustrate aspects of the user interface rather
than the totality of the system’s abilities.
(Mixed-initiative interaction, where the user
can volunteer information, break the decision
tree flow, and disagree with system hypothe-
ses, is possible in a version of CATS currently
being developed, but user interface considera-
tions have not yet been completely worked
out.)

The initial screen during a CATS run con-
sists of a logo and a single button requesting
the user to “Click Here to START DIAGNO-
SIS.” The basic user operation, pointing and
clicking, is referred to as selecting. Once the
run is begun, the screen in figure 1 appears.
The upper right interaction box lists in menu
form the classes of problems appropriate to
the current situation. The circled + symbol is
the cursor. Elsewhere in the run, this window
is used for presenting questions and lists of
symptoms. In this example, only two top-
level problems are included. The other window
initially appearing (at the lower right) is a his-
tory trace. Currently, history consists of an
audit trail of interactions. Eventually, it will
provide a structured record of the interaction
in terms meaningful to the user.

When the user selects “IPL-Related Prob-
lem,” the screen illustrated in figure 2
appears, showing two potential problems in
the interaction box. This screen both implies
and presumes that this set of problems is
exactly what the user needs to handle. The
user is entitled to assume that these problems
are exactly the set of things which can go
wrong with the initial program loading (IPL).
Of course, these symptoms are necessarily the
ones the domain expert told the knowledge
engineer about. No symptoms are present
that the domain expert neglected to mention.
Conditions deemed by the domain expert to
be unlikely to occur are also missing. These
conditions are sometimes referred to as
boundary knowledge and handling them
remains an open research issue. The com-
pleteness of the knowledge base is beyond
the scope of this article. Nevertheless, it is as
critical to the success of the system as any
part of the user interface and is addressed in
the CATS knowledge engineering tool set,
which treats knowledge base correctness, con-
sistency, and completeness.

becomes available, hybrid or remote configu-
rations are likely for systems not powerful
enough to contain their own diagnostics.

An Actual System and
Its Interface

To make the discussion of interfaces tangible,
examples are taken from a specific develop-
ment. The knowledge engineering group at
Philips Labs in Briarcliff, New York, working
with the service department of Philips Medi-
cal Systems in Eindhoven, Holland, built a
development environment for diagnostic sys-
tems called CATS (Lee et al. 1988). “CATS”
stands for the objects in the knowledge
base—components, actions, tests, and symp-
toms. Its initial application was for field diag-
nosis of the Philips Tomoscan 300 series of
tomographic scanners. The examples here
relate to the interface of the delivered expert
system, not to the knowledge engineer’s
interface, which is a different and more com-
plicated problem. The problem treated in the
sample screens is a dead control computer, or
one that will not load.

This particular application is oriented
toward a novice user, who, although an expe-
rienced technician, is not expected to know
much about the Tomoscan itself. Operation is
strictly mouse-menu-, and window-oriented,
and all communication is through single-
function windows. That is, a given window
contains only one type of information. Each
sort of information has its particular window;
this window occupies a specific location on
the screen, although the size can vary

Articles

68 AI MAGAZINE

Figure 1. Top-Level Screen for Tomoscan Diagnostic Program.

In addition to the new symptoms in the
right-hand window, the entire left side of the
screen is filled with an array of small boxes
labeled with the names of functional compo-
nents. At first glance, this display seems over
complicated, but it actually represents the
physical structure of the device’s control com-
puter: its backplane and power section. An
experienced technician identifies with this
representation. The field trial indicated that
even a neophyte is at ease with such a repre-
sentation soon after noting the conceptual
mapping onto the physical device. The com-
ponents are marked UNTESTED. These labels
are updated as the diagnosis proceeds.

When appropriate, How and Why buttons
appear. Figure 3 shows what happens when
the user asks how. In addition to the explana-
tion box, a graphic appears illustrating the
switches referred to in the original query.
When no graphic is appropriate to the expla-
nation, no picture box appears. If no how or
why information is appropriate to a query,
the corresponding button is omitted from the
display. Both the picture and explanation
boxes disappear when the user indicates no
further need for the information.

Figure 4 shows the state of the display after
successful diagnosis and repair. The techni-
cian has replaced the 1216 disk controller (in
the middle of the left-hand column). The
replacement was tested and found to fix the
problem. The label on the 1216 disk controller
changed from UNTESTED to BAD to NEW.
UNTESTED to NEW.OK as the interaction pro-
gressed. Note that the completion message in
the interaction box restates the problem CATS
believes it solved. In a lengthy interaction
with many side trips, the user might well
forget what the original problem was.

In this figure, several of the component
boxes relating to power distribution contain
OK. Although power was not explicitly
involved in the interaction, the user’s
responses indicated behavior that would not
have been possible without power. The
system knows about power distribution and
deduced the presence of power and the state
of at least part of the power-distribution sub-
system. The 1216 disk controller is powered
from the top power supply, now marked OK.
The bottom power supply is not involved and
remains UNTESTED.

Figure 5 is a screen from a test of the opti-
cal subsystem. At this stage in the diagnosis, a
representation of the physical machine is not
appropriate, and the left half of the screen is
blank. When How information is requested,
however, the explanation and graphics boxes
still appear in the same relative positions. In

this example, the graphic is a representation
of the image the technician is expected to see.

Users and Expert Systems
The Tomoscan diagnostic demonstration is an
example of good systems design and poten-
tially excellent user interface design. (The
terms good and excellent are highly subjec-
tive. My own definitions and opinions are
documented elsewhere [Wexelblat 1981,
1983].) What, however, in this implementa-
tion is uniquely relevant to diagnosis expert
systems? An easy answer is “nothing.” A
system is a system is a system. No reason
exists for an expert system to be any different

Articles

FALL 1989 69

Figure 2. Diagnostic Screen for Tomoscan Electronic Subsystem.

Figure 3. Tomoscan Diagnosis: The How Information.

progress from beginner to expert, but some
stall at levels in between. A large group of
infrequent users also displays a mixed exper-
tise, one that shifts suddenly from level to
level. With an expert system, the spectrum of
ability spans at least four dimensions: (1) the
domain knowledge of the user, (2) the user’s
ability to solve problems in the domain with-
out an expert system, (3) the capability and
scope of the expert system, and (4) the host
hardware and software.

(An independent factor is the user’s famil-
iarity with computers and comfort in using
them: During the first CATS field trial, one
subject was sure the computer was sitting in
judgment, grading his ability to service
Tomoscans. He was so fearful, he refused sev-
eral times to select an “I don’t know” button
that would have led him through additional
menus. The cause of this problem was even-
tually traced to improper explanation of the
trial circumstances, but this sort of abstract
problem is almost impossible to anticipate.)

The first two previous points, although
related, are not identical. It might be useful
for a television repairperson to be an
electronics expert, but such expertise is nei-
ther necessary nor sufficient. Another dimen-
sion is added to the spectrum by the intent of
the expert system itself. If it is an adviser, the
user must presumably know a good bit about
the domain. If it is the expert, the user need
not know much at all. Yet another aspect is
the “who’s in charge around here” phe-
nomenon, the touchy balance between task
automation and the user’s autonomy. A
system that takes charge and controls the
interaction might be ideal for one user in one
domain but totally unacceptable to a user
with another level of expertise. An overly
pushy system will be pushed aside.

The designer’s understanding of these
dimensions contributes to usability and,
hence, to user satisfaction and system accep-
tance. In theory, an expert system shell
should provide the interface so that the
implementor only needs to worry about func-
tion. This excellent concept is not yet realized
in a commercial system. Here, however, is a
proposed rule 1 of expert system design:

Make the behavior of the system and its
host hardware so easy to learn and use that
user satisfaction depends solely on the suc-
cess of the knowledge engineering.

As noted earlier, the CATS example uses
only the screen for output and primarily the
mouse for input. For someone at all familiar
with terminals or computers, to learn the
hardware takes seconds. Displays are legible
and consistent in appearance and behavior,

. . . would this were so. A difference does exist
between an expert system and, say, a comput-
er-aided design program, a data-base, a
spreadsheet, or even an expert system shell.
We expect a beginner to spend weeks or even
months learning to use a Lotus, SPICE, or
KEE. However, circumstances are quite differ-
ent with an expert system. The user of an
expert system expects to begin useful work
almost immediately. The difference comes
from the user’s knowledge; the user’s behav-
ior; the user’s training; and, especially, the
user’s expectations. The difference is also in
the kinds of interactions, the kinds of data
the user enters, and the computer’s responses.

In the introduction to a book on the
design of intelligent tutoring systems (ITSs) it
is noted, “That new AI techniques have been
evolved is not surprising given the demands
of ITS; that systems give a reasonably fast
response, be robust, and be able to cope with
noisy, inconsistent and incomplete respons-
es/information” (Sleeman and Brown 1982,
p. iii). Such requirements are not limited to
the ITS domain, only one of many applica-
tion areas for expert systems.

An Informal Characterization
of the User
To succeed, a system designer must anticipate
the abilities of the user. Shneiderman identi-
fies novice users, knowledgeable intermittent
users, and frequent users; another paper
argues for a partly continuous spectrum
(Schneider, Wexelblat, and Jende 1979; Shnei-
derman 1987):
beginner ➞intermediate ➞advanced ➞expert

Both are valid models. Users can smoothly

Articles

70 AI MAGAZINE

Figure 4. Tomoscan Diagnosis: Successful Session.

simple where possible, modeling the domain
where complex. Fancy fonts and non-func-
tional ornamentation are avoided. User train-
ing is measured in tens of minutes rather
than hours or even days. The user pays atten-
tion to the problems of the domain, not the
learning of the system. The diagnostic struc-
ture and even the vocabulary used in the
system contain implied assumptions of what
users will understand. Overconcern with
learning is dangerous. Without going into
detail, it is appropriate to note one of the
basic rules for the design of systems of any
sort: Ease of learning is not the same as ease
of use. (In fact, they might be inversely relat-
ed. Easy to learn might lead to harder to use
in the long run.)

Implied promises
Users expect more from an expert system
than from a conventional computer program,
but their expectations are harder to
understand, codify, and model. The nature of
an expert system is to reason and give
answers that might well not be obvious to the
user. By appearing intelligent, an expert
system can unintentionally seduce a user into
believing that it is intelligent. Even though
the user knows the computer is a machine,
the more it does, the more intelligent it
appears, and the more users can be misled (or
can mislead themselves). This situation has
existed for years—perhaps since the non-
English English-like Cobol programming
language was first released. Cobol’s superficial
resemblance to English is misleading. DIVIDE
BALANCE INTO 3 means

3
—————
BALANCE

not

BALANCE
—————

3

Books have been written about the tenden-
cy of people to endow the early conversation-
al system ELIZA, essentially a dumb program,
with intelligence and natural language capa-
bility (Weizenbaum 1976). To coin a cliché, a
little intelligence is a dangerous thing. A com-
puter program is a fully deterministic, finite-
state process. A tendency exists, enhanced by
the overuse of anthropomorphisms (as I did
earlier when I wrote, “CATS believes it
solved”), to create the image of a program as a
dumb human, a sure way to mislead the
user’s expectations.

The expert system must clearly state its
limits, which is difficult to do in general, but

necessary in any particular application. As
long as the system handles part of the prob-
lem, users expect it to handle the whole prob-
lem. If it solves the whole problem, people
expect it to solve more problems. During
early demonstrations of Tomoscan diagnosis,
it was hard to keep visitors focused on the
matter at hand: a computer was actually diag-
nosing problems with a scanner. A typical
interaction follows:
Demonstrator: At present only one symptom is
included for the optical subsystem. Others
will be added before the field trial begins.
Visitor: I understand completely. Tell me, why
is there no ability to handle {long list of other
optical subsystem problems}?

Input and Output
By its nature, an expert system has more work
to do in input verification and error checking.
More kinds of input and output exist and are
less constrained. In addition to the noisy,
inconsistent, and incomplete responses men-
tioned earlier, the system will have to cope
successfully with contradictory information
entered accidently or by design. Although not
explicitly stated earlier, diagnosis embraces
repair in the sense that part of the process is
to replace components in the hope of isolat-
ing the fault to a replaceable component.
Diagnosticians make assumptions and then
try to verify or disprove them; for example:
Assumption: The power supply is OK.
Test: Check the floppy disk drive

head movement.
Observation: There is no noise and no

motion, and the pilot light
is off.

Articles

FALL 1989 71

Figure 5. Tomoscan Diagnosis: Optical Subsystem.

the user interface aspects of this sort of inter-
action are only a small part of what is
needed, form is as important as function.

Help
Earlier it was noted that more sorts of user
assistance are needed. One reason is that the
expert system, especially if capable of reason-
ing and inference, is working by methods not
likely to be understood by the user. Another
reason is that it is difficult for the user to
understand fully the domain of applicability
and the limits on the domain. At least six dis-
tinct sorts of help information exist that the
user of an expert system might require. They
are characterized by the following questions
the user might ask of the expert system and
are discussed in the subsequent discussion:

How do I do what you ask me to do?
Why do you ask me to do this task?
How did you come to this question

or conclusion?
By what steps did we get here?
What do I do next?
What do you know about? Or even worse:
Do you know about X?
What can you tell me about X?
Can I do Y?

How do I do what you ask me to do? The user
was asked to perform some action and needs
instruction on how to achieve it. The system
must respond in terms meaningful to the
interaction. Examples of such interactions
appear in figures 3 and 5. Of course, in a
system designed for users with different levels
of domain expertise, different sorts of
responses are required.

Why do you ask me to do this task? In other
words, what is the purpose of the action you
suggest. If the user selects Why in response to
“when you run diagnostics, how many
switches work,” the system responds, “To test
the CPU switches and bulbs.” Such a query is
more than just an idle question. A novice
might use it to learn more about the domain,
or an expert might use it to test the correct-
ness of the system’s methods.

How did you come to this question or conclu-
sion? This query is usually interpreted in the
context of the reasoning process of the expert
system itself. In many rule-based systems,
such an inquiry is answered by referring to
the assertions and hypotheses and the rule-
base itself. Teiresias is an explanation pro-
gram associated with the MYCIN medical
diagnosis system (Barr and Feigenbaum
1982). In the following example, MYCIN asks
the user a question, and the user asks why
(that is, “Why do you ask this question?”).

Assumption: The power supply might not
be OK after all.

The technician begins by assuming that the
power supply is working (so informing the
system) and later decides the information is
incorrect. The system must now update its
database and revise not only the assumptions
but also the inferences drawn from these
assumptions. Although primarily a matter for
the internals of the expert system, nonmono-
tonicity also has ramifications for the user
interface. When assumptions change, the
user should be told. At times in the Tomoscan
system run, the term OK might have a modi-
fier ASSUMED OK; INFERRED OK; PROVEN
OK; or perhaps even YOU SAID IT WAS OK,
BUT I DOUBT IT. Error and compensation for
error are intrinsic to the diagnostic process:
Observation: There are no lights, no

nothing.
Assumption: There is a power problem.
Observation: The fuse is blown.
Action: Replace it. (Other diagnostic

activities until suddenly:)
Observation: There are no lights, no

nothing.
In fact, the blown fuse was a symptom

rather than the cause of the problem. Fixing
the fuse connects power to the rest of the
system, but eventually overheating some-
where causes the fuse to blow again. Two
functional and interface considerations apply
here. The replaced fuse should be marked
REPLACED or UNTESTED. Also, the work
done between replacing the fuse and its blow-
ing out should not be wasted. Even if the
technician has to divert attention to the
power section, it must be convenient to
return afterwards to the point where the fuse
blew. The interface must make available
information sufficient to establish the prior
context. Further, tools must be available to
enable and assist many levels of context shift-
ing. In the evolving mixed-initiative interface
of CATS, an entire new class of problems has
arisen. The user volunteers information that
might (usually much later in the session)
conflict with system-deduced hypotheses. By
definition of the resolution strategy, it is the
responsibility of the user to decide which
assertion to retract, and it is the responsibility
of the system to display the conflict and the
support for each alternative in domain-specif-
ic terms adapted to the interaction. That is,
rather than just say, “You said A and CATS
deduced not-A,” an entire context must be
set. Furthermore, after resolution (which can
entail several additional test or repair
actions), the session must be placed back into
a situation meaningful to the user. Although

Articles

72 AI MAGAZINE

Then Teiresias takes over, expanding the ques-
tion and answering it. An expansion is impor-
tant, allowing the user to be sure exactly what
question the system is responding to.

What is the suspected portal of entry of
rorganism-1 into this sterile site?
** WHY
[I.e., why is it important to determine the

suspected portal of entry of organism-1
into this sterile site?]

[3.0] . . . in order to find out about an
organism or class of organisms for which
the therapy should cover.

It has already been established that
[3.1] The site of the culture is blood
[3.2] The stain of the organism is gram

positive
Therefore if:

[3.3] The portal of entry of the organism
is G.I.

[3.4] [Abdomen is the locus of the infec-
tion, or Pelvis is the locus of the infec-
tion]

Then
There is strongly suggestive evidence (.9)
that Enterobacteriacaea is the class of
organisms for which therapy should
cover.

[Rule 095]

Explanations of the Teiresias sort are not
easy to achieve. Teiresias is itself a rather com-
plex expert system. It reasons about the rule
base and reasoning processes of MYCIN to
achieve its responses. Typically, a shallow
knowledge diagnostic system does not con-
tain this class of user assistance. The more
expert the user is, the more detailed the assis-
tance that is required. Physicians being what
they are, a medical diagnosis system for
physicians could not succeed—probably
couldn’t even get a fair hearing—without
being able to explain itself in detail. Diagnos-
ticians of electronic systems, accustomed to
using electronic aids, are likely to accept
canned expertise. The users of the medical
systems, highly trained, are likely to under-
stand medical reasoning at a fairly deep level.
(Much more is at stake in medical diagnosis,
and the cost of error is much much higher
too.) The technician is more likely to accept a
phenomenological approach, but that does
not let a nonmedical diagnostic system
designer totally off the hook. Although the
end user might be satisfied relatively easily,
the knowledge engineer should not be. As the
scope and complexity of the diagnostic
knowledge base grows, the designer needs to
be able to examine conclusions and deduc-
tions at the reasoning level.

By what steps did we get here? It is typical of
an accounting program to create an audit
trail, a history of the operations that would
permit an auditor to recreate every interac-
tion. An expert system should be able to do
the same. It should be able to show all the
questions, answers, deductions. With suitable
instrumentation, this display could be struc-
tured to show, perhaps in tree form, all the
avenues explored. Nothing restricts the use-
fulness of such a display to the end of the
interaction. In a complex process, it would be
useful at any point, not only to see the prior
steps but to revisit any earlier point, either to
explore an apparent dead end more thor-
oughly or, perhaps, to set off on an entirely
different tack.

What do I do next? This question was
referred to earlier as the “who’s in charge
around here” phenomenon. In books on
human factors, it is more formally referred to
as the balance of control between automation
and human control. Shneiderman (1987) pre-
sents a lengthy table drawn from several
sources listing where humans are generally
better and where machines excel. For exam-
ple, humans tend to be better at recognizing
constant patterns in varying situations,
machines at sensing stimuli outside a
human’s range. In an expert system, the abili-
ties and needs of three players must be bal-
anced: the user, the computer, and the
domain experts who supplied the knowledge
base. To summarize a topic worth an article
on its own:

The user should do those operations
humans are best at, the computer those oper-
ations computers are best at.

If the expert system is an assistant, the user
should control the interaction but be able to
ask the computer for advice on how to pro-
ceed.

If the expert system is designed to be
autonomous, the user should expect to be
told (better, asked) what to do.

If the user is an expert, the best model is to
have the expert system in the assistant role.

If the user is less expert than the knowledge
suppliers, the control balance decision should
be influenced by the domain experts’ judg-
ment on the best mode of operation.

When in doubt, give the computer the
assistant’s role but supply plenty of what do I
do next information.

What do you know about? Do you know about
X? Can I do Y? Computer programs do not
(yet?) have self-awareness. Nevertheless,
although no systems have such a capability
today, users of expert systems need to ask
such questions; eventually, a program will

A system is a
system is a
system. No
reason exists
for an expert
system to be
any different .

Articles

FALL 1989 73

The principle of parsimony: If the user asks a
simple question, the user expects a simple
answer. If the full answer is long or complex,
it is better to supply a summary and provide
the ability for the user (with a single
keystroke or mouse click) to request more.

The principle of extrication: The user should
be instantly able (with a single keystroke or
mouse click) to terminate the assistance
request and return to the point where the
request was made. The screen or display
should be restored exactly to the state before
the request except, perhaps, for a record of
the request in the history log.

The golden rule: The user often needs assis-
tance but does not know it. A truly expert
expert system should recognize and respond
accordingly. Research is needed here. “He
who sees a need and waits to be asked for
help is as unkind as if he had refused it”
(Dante, Purgatorio).

An Object-Function Model of
the User Interface

A reasonable way to go about designing a
computer program (once the specifications
and goals are defined) is to (1) decide what
objects are to be manipulated and what oper-
ations can be performed on them, (2) select a
representation of the objects and the functions
that implement these operations, and (3)
compose the data structures from the repre-
sentations and the program from the functions.

The first two steps might be likened to
defining the semantics and syntax of a lan-
guage. The objects and operations correspond
to semantics, and the representations and
functions correspond to syntax. In principle,
it is well to define the former before the
latter. In practice, implementation considera-
tions can require trade-offs and the rethink-
ing of earlier definitions. However,
experience has shown that if syntactic con-
siderations can be deferred, it is easier to
achieve correctness.

This model can be mapped onto the design
of user interfaces. In the semantics part, the
objects are the messages, the types of infor-
mation to be displayed or entered—questions
and answers, for example. The operations are
what is to be done with these objects. Ques-
tions are asked and answers given, for exam-
ple. By the way, parallel processing is
indicated even at this abstract level. When a
question is asked, and how or why informa-
tion is available, appeal is made in parallel to
two aspects of the user’s attention. The
syntax of the interface is, of course, the

have to be able to describe its own limits. No
guidelines are proposed here except that such
questions are almost always in the mind of
the user, and the more facile a system is, the
more the user expects it to know. If the
system cannot recognize a situation outside
its limits, the user is not well served. A classic
example follows:
User: Did Dick pass home

economics?
Computer: No.

The user now concludes that Dick failed
home economics. Actually, Dick never took
the course. The computer was really answer-
ing the question, Is Dick’s name on the list of
those passing home economics. (I am on the
verge of never being able to use this example
again. A recent paper described a significant
step toward solving this null value problem.
[Kao, Cerone, and Luk 1988].)

Articles

74 AI MAGAZINE

Semantics Main dialog for Q/A interaction, how/why options

Syntax Window, text for output, mouse-menu selection for
input

Style Window in upper right, always present during
interaction; label in window header is left justified,
meaningful to the user (in the context of the inter
action); the window may not be overlaid by anoth
er window; output text, ragged right; horizontal
mouse-menu for primary input; visually distinct
(optional) how-why menu; CURSOR NORMALLY
HERE

Semantics Structural model display

Syntax Physically model device, display status

Style Window on left half of screen, overlayable, nested
window of windows, and so on

Semantics History log, output only

Syntax Scrolling window

Style Window, lower right; overlayable

Semantics How (optional), graphic adjunct (optional)

Syntax . . .

Style . . . CURSOR APPEARS HERE WITH MESSAGE
“click to exit”

Semantics Graphic

Syntax . . .

Style Window to left of How box; appears with How box,
disappears with it

Figure 6. Informal Abstract Representation of Figure 3.

implementation onto the screen, printer,
mouse, keyboard, loudspeaker, and so on.

It is difficult to characterize the usability
and aesthetic aspects of the interface neatly.
In the programming languages area, such
aspects are depreciated as syntactic sugar,
implying they are in some sense unnecessary.
It is almost an abstract virtue to avoid them.
With the user interface, these implementa-
tion details are the most important aspect.
They can be considered the style of the inter-
face. Abstracting the style, the mode of imple-
mentation, from the syntax provides a useful
third part of the interface abstraction. For
each class or stream of information to be
transferred, its semantics, syntax, and style
must be defined. (If semantics and syntax are
analogous to strategy and tactics, then style
might be an analog of logistics.) Figure 6
shows an informal specification of semantics,
syntax, and style of the screen illustrated in
figure 3.

Clearly, some of the style options apply to
more than one message class and more than
one screen. Because style definitions can be
global and nested just as other parts of system
definition, the following higher-level defini-
tion might have been made: All nongraphic
windows have meaningful one-line labels left-
justified in the window header. Such general-
izations are useful. Why, for example, exclude
graphics windows? (The answer for CATS is
the familiar, “It just happened this way.”)
With style as with syntax and semantics, it is
easier to consider such global issues as consis-
tency at an abstract label. Abstraction also
aids the identification of common items.
Properly structured, a style definition could
drive an interface compiler, but discussion of
such a compiler is beyond the scope of this
article.

Actually, figure 6 is more like the output of
a representation generator. The input is more
like building a sample screen with a menu
selection plus the drawing package generator
tool currently under development. The work
is considered proprietary, but it bears some
resemblance to the methods described in a
recent article by a friend and former col-
league, Anatol Holt (1988).

The User’s Conceptual Model
of the System
Earlier, the user’s understanding of, and
expectations for, the system were discussed.
These are just part of the model of the system
the user has internalized. Despite any formal
documentation, training, and experience,
interacting with a complex system is a form
of gedanken experiment. The user forms

hypotheses about the system and works
within the bounds of the hypotheses. When
experience shows different behavior, one of
two events occurs. Either users ignore, ratio-
nalize, or just don’t notice the inconsistency,
or they adjust the model, perhaps by explicit
experimentation.

In the former case, it is difficult to predict
what can occur. It is possible that the user
model will significantly diverge from the true
behavior. (Incidentally, the definition of true
is subjective. What users see is the truth to
them. If a system is hard to learn, users
strongly resist changing their model even in
light of objective evidence.) Humans tend to
forget that computers are deterministic. A
common response to the unexpected behav-
ior of software is to pretend it didn’t happen
in the hope that it won’t happen again. The
flaw in the original Space Shuttle control pro-
gram that delayed the first launch was
observed twice during practice runs by tech-
nicians who responded by restarting the
system. The actual bug had a 1 in 148 chance
of appearing at the power-on stage. In both
cases, because restart fixed the problem, no
one followed up. The day of the first launch
was one of those 1 in 148 instances, and the
launch was aborted.

Such human behavior must be taken into
account in several ways in the design of
expert system interfaces. In the first place, the
designer must assume that the system and its
documentation are not fully correct or com-
plete and that the user will not fully under-
stand what the system does. Assume the user
will make errors. Then design the interface to
help keep the actions of the system clear to
the user. The following might improve the
chances of a correct user’s model:

First, provide a focus of attention. (In
CATS, the cursor was enlarged from the
normal small arrow. In general, the user’s
attention is directed to the point [or at least
the window] where the cursor is. See, howev-
er, the discussion on changes of state.)

Second, at all times, make clear the full
range of operations available to the user at
this point in the interaction. (If How and
Why buttons are not present, the user’s
model might omit them at critical times.)

Third, omit unnecessary items from the
display. (If the system model is not relevant
to a given interaction, remove it from the
screen. If it stays there when not needed, the
user can begin to ignore it.)

Fourth, make changes of state obvious. (A
hard one: When the state of a device in the
CATS system model changes, the new value
flashes a few times in an attempt to bring it

Articles

FALL 1989 75

individual users. If a long-term relationship
exists between the user and the system, the
latter sort is possible. Today, cognitive model-
ing at the level of the individual must be con-
sidered as a sort of Holy Grail. It might never
be found, but there is virtue in the search.
The following points summarize some of the
work done and some that is still required.

Knowledge about users (by experience
class): The system of the future will be
designed to behave differently for different
levels of user. Users will be categorized by
level in terms of expected knowledge and
expected behavior. For example, an expert
might be asked, “Is the power supply func-
tional?” The novice might get the question,
“Are there any warning lights on the power
supply?” If an inexperienced user hesitates a
long time before answering, it would be well
for the program to take the initiative—offer
advice or make a suggestion. With an experi-
enced user, unless the wait gets excessive,
better to let well enough alone. Conceivably,
certain sorts of group behavior must also be
accommodated. With a lone user, it is possi-
ble to draw conclusions about the reason for
a delayed answer. If two people are working
together, unless it is certain that both are
rank beginners, it would be best for the pro-
gram not to take any initiative.

Knowledge about an individual user: How
might the machine tell a user’s level of exper-
tise at first? It is best to just ask and take the
answer with a grain of salt.

Adaptation and learning: The system will
have to be able to adapt to changing patterns
of behavior. In keeping profiles of individual
users, it will be possible to learn an individu-
al’s behavior patterns; note changes; and by
using the stored taxonomy of models, change
the interface to meet a new set of needs. It is
unlikely that any AI system will be able to
learn totally new behaviors by observing
users. However, it is possible that with active
human aid, the taxonomy could be periodi-
cally extended. If the machine is permitted to
store interaction profiles, existing classifica-
tion schemes could be used to seek patterns
that could be exploited, for example, in
understanding the reasons for repeated errors.

Reasoning and planning: It is quite clear
how user modeling on a class or individual
basis could be exploited in user assistance
and tutoring systems. How to make more
general use of such an ability in general is not
clear. Nevertheless, even if limited to these
two areas, individualized behavior would be
worth the research effort. One way to achieve
the desired behavior is to apply planning
methods. Work has been done toward model-

to the user’s attention. Actually, the user’s
attention is usually fixed elsewhere, and the
flashing is ignored or, at best, stopped by the
time the user notices. Color, if available,
would be useful here.)

Making the system friendly will help moti-
vate the user to spend enough time learning
the system to build a correct model. The fol-
lowing guidelines are recommended:

First, encourage explicit “what would
happen if” experimentation by making it
easy for the user to checkpoint the state,
experiment, and return to that state.

Second, log errors, annotate the log to
make the context clear, and make the log
available to the user. (See next item however.)

Third, ensure the privacy of an interaction.
(Experimentation is more likely if users feel
their errors will not be seen by others.)

Fourth, don’t be pushy. (If a response to a
question is required, wait a suitable time and
then offer assistance. If it’s the user’s turn to
take an action, wait a longer time and then
indicate possible alternative actions. In nei-
ther case, force response to the assistance
offer. The user might want to work on the
original item.)

The System’s Conceptual Model
of the User
It is reasonably well accepted that “user
models are an essential component of any
system that attempts to be ‘user friendly’, and
that expert systems should tailor explana-
tions to their users, be they super-experts or
novices” (Sleeman 1985). Although some
studies limit their attention to user-requested
assistance in expert systems, others treat
more general areas such as tutoring systems
and knowledge acquisition (Boose 1985;
Zissos and Witten 1985). The extent to which
an entire system needs to be specialized
depends—as always—on the types of users
and their expertise. It is relatively easy to
accommodate a single class, but it is not
known how to handle all at once. Based on
extrapolations of recent research, systems will
first be made to cope with users by class and
then with users as individuals. In effect, the
system will have to build and use a database
keyed to individuals. In slightly fantastic
terms, the system will have to know its users,
learn their needs, and plan its actions accord-
ingly. The words know, learn, and plan were
deliberately chosen to identify the research
that is needed to build tomorrow’s systems.

Models come in two flavors, canonical
models that categorize an abstract user (per-
haps tied to the level of expertise) and indi-
vidual models which are identified with

The expert
system,

especially if
capable of

reasoning and
inference,

is working by
methods not

likely to be
understood by

the user.

Articles

76 AI MAGAZINE

ing the user in a teaching assistant by infer-
ring the student’s problem-solving plan and
using this plan to generate advice to the stu-
dent (Genesereth 1982). In a diagnosis
system, the overall plan of the user is clear:
Find faults and fix them. In a system designed
as an expert’s assistant, this methodology
could be applied to building a hierarchy of
plans about the user’s goals and subgoals, tied
to the symptoms and observations. A base of
such plans could then be used to drive the
system for a less experienced user.

Is it really necessary for an expert system
such as the CATS Tomoscan application to
have so facile and so complicated a behavior?
No, but the current state of the art in expert
systems is only the shadow of things to come.
Consider only the limited domain of diagno-
sis and repair of medical equipment. Today,
when a Tomoscan occasionally fails, a techni-
cian arrives and fixes it. Future generations of
diagnostic equipment will be orders of magni-
tude more complex—as will their mainte-
nance. The first line of defense will be
self-diagnosis, but it is unlikely that an elec-
tronic-optical-mechanical system of this mag-
nitude will ever be fully self-testing. Users
(who will probably be interacting with an
expert system during normal operation) will
handle triage and first aid with the aid of a
diagnostic system running on the machine
itself, and this user might be anyone from a
repair technician to a medical technician to a
physician. Here is where the adaptive, learn-
ing interface will be needed.

Is there any hope of quick progress? In the
words of an active researcher, “Conceptual
modeling is all the rage these days. The prob-
lem is domain knowledge. That is, there’s no
good way to model a ‘generic’ user. The best
systems use pre-knowledge of the domain the
user is working in and make some assump-
tions about his level of expertise” (Wexelblat
1987). That is, in terms of responding to a
user’s stated level, probably yes. In terms of a
true individual user model, probably no. In
summary, significant improvement is likely.
Truly intelligent interfaces, however, remain
in the misty future.

A Warning and a Conclusion
I have tried to clarify some issues concerning
the interaction between humans and comput-
ers in the realm of expert systems and, I
believe, to other sorts of AI programs. In doing
so, it has been necessary to use the euphemisms
and anthropomorphisms of the computer
community. Such uses often mislead those
outside the community. Working within the

field, we must not become inured to the dan-
gers of misleading others and ourselves(!).

I don’t quite know whether it is comput-
er science or its subdiscipline Artificial
Intelligence that has such an enormous
affection for euphemism. We speak so
spectacularly and so readily of computer
systems that understand, that see,
decide, make judgments, and so on,
without ourselves recognizing our own
superficiality and immeasurable naivete
with respect to these concepts. And, in
the process of so speaking, we anes-
thetize our ability to evaluate the quality
of our work and, what is more impor-
tant, to identify and become conscious
of its end use (Weizenbaum 1986, p. iv).

When we say a computer calculates, we
mean that it is doing a process analogous to
human calculation resulting in the same
answer. Whether that process is truly analo-
gous to the human mental process of calcula-
tion is irrelevant. Mechanical methods exist
that can tell if the computer is computing
correctly. When we say that the computer is
an expert, we are treading on ground which is
less firm. It is the responsibility of the knowl-
edge engineer to make sure that the knowl-
edge is complete, consistent, and correct and
that the inference methods draw the correct
conclusions. We will eventually have to learn
to trust these systems, or we might as well
abandon the effort to build them, which is
what explanation systems are all about. The
responsibility of the system designer is to
include as much intelligence or pseudointelli-
gence as possible. The responsibility of the
designer of the user interface is to make the
workings of the system as clear and apparent
as possible and to make the use of the system
as simple as possible.

Simplicity, simplicity, simplicity. I say, let
your affairs be as two or three, not a
hundred or a thousand; instead of a mil-
lion, count half a dozen, and keep your
accounts on your thumb nail (Thoreau,
Walden).
The boundary between science and art

(mysticism?) is sometimes obscure. Exposi-
tions of the human-machine interface,
although claiming to be the former, tend
toward the latter. Precious few hard data are
supported by rigorous statistics in the field.
Those which have been verified tend to be
microproblems (what is an optimal number
of items in a menu?) rather than global issues
(automation versus human control). Evidence
tends to be anecdotal (well, we did it this way,
and no one complained). Controlled experi-

Articles

FALL 1989 77

L. 1988. A Development Environment for
Diagnosis Tools. In Proceedings of the IEEE Confer-
ence on AI Applications, 262–267. Piscataway, N.J.:
IEEE Computer Society Press.

Schneider, M. L.; Wexelblat, R. L.; and Jende, M.
1979. Designing Control Languages from the User’s
Perspective. In Command Language Directions, ed. D.
Beech. Amsterdam: North Holland.

Shneiderman, B. 1987. Designing the Human Inter-
face. New York: Addison-Wesley.

Shneiderman, B. 1979. Software Psychology. Cam-
bridge, Mass.: Winthrop.

Sleeman, D. 1985. UMFE: A User Modeling Front-
End Subsystem. International Journal of Man-
Machine Studies 23:71–88.

Sleeman, D., and Brown, J. S., eds. 1982. Intelligent
Tutoring Systems. Orlando, Fla.: Academic.

Weizenbaum, J. 1986. Not without Us. Computers
and Society 16(2–3): 2–7.

Weizenbaum, J. 1976. Computer Power and Human
Reason. San Francisco: Freeman.

Wexelblat, A. D. 1987. Personal electronic commu-
nication, 8 March.

Wexelblat, R. L. 1983. Designing the Systems of
Tomorrow. Electrical Communication 58(1): 93–97.

Wexelblat, R. L. 1981. Design of Systems for Inter-
action between Humans and Computers. Paper pre-
sented at the 1981 Meeting of the British Computer
Society, London, 15-17 August.

Zissos, A. Y., and Witten, I. H. 1985. User Modeling
for a Computer Coach: A Case Study. International
Journal of Man-Machine Studies 23:729–750.

Notes
1. Occam’s Razor: Entities should not be multiplied
unnecessarily.

Richard L. Wexelblat recently joined the
Institute for Defense Analyses as the deputy
director of the Computer and Software Engi-
neering Division. Prior to this position, he
was research department head for artificial
intelligence at Philips Laboratories, where his
group was active in research and in develop-
ing practical applications of AI methods.
Wexelblat received a bachelor’s (1959) and a
master (1961) of science in electrical engi-
neering from the Moore School of Electrical
Engineering and a Ph.D. (1965) in computer
science from the Graduate School of Arts and
Sciences at the University of Pennsylvania.
He is a member of the American Association
of Artificial Intelligence, American Associa-
tion for the Advancement of Science, Associa-
tion for Computing Machinery, and Institute
of Electronics and Electrical Engineers.

ments are hard to plan, hard to do, and hard
to find in the literature.

Many of the principles described here are
included in the Tomoscan diagnostic system.
A cognitive psychologist, Dr. Maddy Brouwer-
Janse, was involved in the early 1988 field
trial, and her paper describing this experience
might be published later. In the meantime,
system designers are urged to give the ideas
espoused here a chance. If you agree with them,
try them out. If you disagree and have better
ideas, I’d appreciate getting copies of your
write-ups. Alternatively, please consider con-
tributing to a revised edition of this article. ■

Acknowledgments
The work described in this article was performed
while the author was at the AI Research Department
at Philips Laboratories, Briarcliff Manor, NY 10510.

The initial Tomoscan diagnostic prototype was
implemented by Dr. David Schaffer with the assis-
tance of Mr. John Martin. The CATS implementa-
tion was done by Dr. K. P. Lee, Dr. Paul E. Rutter,
and Mr. John Martin. Dr. Rutter had responsibility
for the design of the user interface. Dr. Jorge
Caviedes, Mr. Tejwansh Anand, and Mr. Michael
Reed are the current members of the knowledge
engineering group supporting CATS. Mr. Robert
Purdy of Philips Medical Systems in the United
States and Mr. Derek Fosberry of Philips Medical in
Holland were the (patient) domain experts whose
experience was mined for the knowledge base.

I thank those who commented on drafts of this
article: Lee, Rutter, Schaffer, and unnamed review-
ers. Thanks also to Alan D. Wexelblat of Texas
Instruments who pointed me to a significant part
of the recent literature on conceptual modeling.

References
Barr, A., and Feigenbaum, E. A. 1982. TEIRESIAS. In
The Handbook of Artificial Intelligence, Volume 2,
eds. A. Barr and E. A. Feigenbaum, 87–101. Los
Altos, Calif.: William Kaufmann.

Boose, J. H. 1985. A Knowledge Acquisition Pro-
gram for Expert Systems Based on Personal Con-
struct Psychology. International Journal of
Man-Machine Studies 25:495–525.

Carroll, J. M., and McKendree, J. 1987. Interface
Design Issues for Advice-Giving Expert Systems.
Communications of the ACM 30(1): 14–31.

Genesereth, M. L. 1982. The Role of Plans in Intelli-
gent Teaching Systems. In Intelligent Tutoring Sys-
tems, eds. D. Sleeman and J. S. Brown. Orlando,
Fla.: Academic.

Holt, A. 1988. Diplans: A New Language for the
Study and Implementation of Coordination. ACM
Transactions on Office Information Systems 6(2):
109–125.

Kao, M. N.; Cerone, N.; and Luk, W. S. 1988. Pro-
viding Quality Responses with Natural Language
Interfaces: The Null Value Problem. IEEE Transac-
tions on Software Engineering SE-14(7): 959–984.

Lee, K. P.; Martin, J. C.; Rutter, P.; and Wexelblat, R.

Articles

78 AI MAGAZINE

