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The majority of work
in knowledge repre-
sentation has dealt
with the technicali-
ties of relating predi-
cate calculus to
other formalisms
and with the details
of various schemes
for default reason-
ing. There has almost
been an aversion to
addressing the prob-
lems that arise in
actually represent-
ing large bodies of knowledge with content.
However, deep, important issues must be
addressed if we are to ever have a large intelli-
gent knowledge-based program: What onto-
logical categories would make up an adequate
set for carving up the universe? How are they
related? What are the important facts and
heuristics most humans today know about
solid objects? And so on. In short, we must
bite the bullet.

We don’t believe there is any shortcut to
being intelligent, any yet-to-be-discovered
Maxwell’s equations of thought, any AI Risc
architecture that will yield vast amounts of
problem-solving power. Although issues such
as architecture are important, no powerful
formalism can obviate the need for a lot of
knowledge.

By knowledge, we don’t just mean dry,
almanac-like or highly domain-specific facts.
Rather, most of what we need to know to get
by in the real world is prescientific (knowl-
edge that is too commonsensical to be includ-
ed in reference books; for example, animals
live for a single solid interval of time, nothing
can be in two places at once, animals don’t
like pain), dynamic (scripts and rules of thumb
for solving problems) and metaknowledge
(how to fill in gaps in the knowledge base,
how to keep it organized, how to monitor
and switch among problem-solving methods,
and so on).

Perhaps the hardest truth to face, one that
AI has been trying to wriggle out of for 34
years, is that there is probably no elegant,
effortless way to obtain this immense knowl-
edge base. Rather, the bulk of the effort must
(at least initially) be manual entry of assertion
after assertion.

Half a decade ago, we introduced (Lenat,
Prakash, and Shepherd 1986) our research
plans for Cyc, a decade-long, two person-cen-
tury effort we had recently begun at MCC to
manually construct such a knowledge base.

We have come a
long way in this
time, and this article
presents some of the
lessons learned and a
description of where
we are and briefly
discusses our plans
for the coming five
years. We chose to
focus on technical
issues in representa-
tion, inference, and
ontology rather than
infrastructure issues

such as user interfaces, the training of knowl-
edge enterers, or existing collaborations and
applications of Cyc.

The Evolution of the 
Cyc Methodology

For two decades, AI research has been polar-
ized into neats and scruffies (roughly corre-
sponding to theoretical versus experimental
approaches). After an initial strongly scruffy
approach, we seem to have settled on a
middle ground that combines the insights
and power of each.

On the one hand, we realized that a number
of mistakes made in the project’s initial years
would have been avoided by a more formal
approach (especially in regard to the con-
struction of the representation language). We
also realized that philosophy had a lot to con-
tribute, especially when it came to deciding
on issues of ontology (Quine 1969).

On the other hand, however, there are a
number of areas where we found the empiri-
cal approach more fruitful. The areas are typi-
cally still open research issues for the formalists
or have not even been addressed by them, for
example, codifying the most fundamental
types of goals that people have.

Therefore, our approach is to largely carry
out empirical research and be driven by look-
ing at lots of examples but to keep this work
supported on a strong theoretical foundation.
Further, we have been driven to adopt a kind
of tool-kit orientation: Assemble a collection
of partial solutions to the various difficult
problems Cyc has to handle, and add new
tools as required. That is, for a number of
problems (time, causality, inference, user
interface, and so on), there aren’t any known
general-purpose, simple, efficient solutions,
but we can make do with a set of modules
that enable us to easily handle the most
common cases.

. . . an 
aversion to
addressing 
the problems
that arise in
actually 
representing
large bodies
of knowledge
with content. 
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After explicating the need for a large common-
sense knowledge base spanning human consen-
sus knowledge, we report on many of the lessons
learned over the first five years of attempting its
construction. We have come a long way in terms
of methodology, representation language, tech-
niques for efficient inferencing, the ontology of
the knowledge base, and the environment and
infrastructure in which the knowledge base is
being built. We describe the evolution of Cyc
and its current state and close with a look at our
plans and expectations for the coming five years,
including an argument for how and why the
project might conclude at the end of this time.
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kept modifying and tweaking such mecha-
nisms, and often, this method forced us to go
back and redo parts of the knowledge base so
that they corresponded to the new way the
inference engine worked. As the size of the
knowledge base increased, this process
became intolerable. We came to realize that
having a clean semantics for the knowledge
base was vital, declaratively expressing the
meaning of inheritance, TheSetOf, default
rules, automatic classification, and so on, so
that we wouldn’t have to change the knowl-
edge base when we altered the implementa-
tion of one of the mechanisms.

As late as 1987, the only inferencing in Cyc
was done using these few mechanisms: inher-
itance along instances (IS-A) links, rigid
toCompute definitions of one slot in terms of
others plus the running of demons (opaque
lumps of Lisp code) and expert system–like
production rules. The results were inefficien-
cies (because of the overuse of the most gen-
eral mechanisms), abstraction breaking (often
resorting to raw Lisp code escapes), and inad-
equacies (for example, given a rule “If A Then
B,” and ¬B, Cyc couldn’t conclude ¬A.)

For efficiency’s sake, we developed dozens
of specialized inference procedures, with spe-
cial truth maintenance system–related (TMS-
related) bookkeeping facilities for each (Doyle
1987). Then, to recoup usability, we devel-
oped a mechanical translator so that one can
now input general predicate calculus–like
assertions, and Cyc can convert them from
this epistemological level into the form
required by these efficient heuristic-level, spe-
cial-purpose mechanisms (see The Current
State of the Representation Language).

Originally, Cyc handled defaults in an ad
hoc and frequently inadequate way. In the
last two years, we have moved to a powerful
and principled way of handling them. As we
discuss in the section Epistemological Level
and Default Reasoning, Cyc constructs and
compares arguments for and against a propo-
sition, using explicit rules to decide when an
argument is invalid or when one argument is
to be preferred over another.

Early on, we allowed each assertion in the
knowledge base to have a numeric certainty
factor (cf), but this approach led to its own
set of increasingly severe difficulties. For
example, one knowledge enterer might assert
A and assert B and assign them cfs of 95 and
94 (on a 0–100 scale). There wasn’t statistical
data to support these numbers; the knowl-
edge enterer just meant to express that both
A and B were likely, and A was slightly more
likely than B. The problem is that some other
knowledge enterer might assert C and assert

The bulk of the effort is currently devoted
to identifying, formalizing, and entering
microtheories of various topics (such as shop-
ping, containers, emotions). We follow a pro-
cess that begins with a statement, in English,
of the microtheory. On the way to our goal,
an axiomatization of the microtheory, we
identify and make precise those Cyc concepts
necessary to state the knowledge in axiomatic
form. To test that the topic has been ade-
quately covered, stories that deal with the
topic are represented in Cyc; we then pose
questions that any reader ought to be able to
answer after having read the story.

One of the unfortunate myths about Cyc is
that its aim is to be a sort of electronic ency-
clopedia. We hope that this article lays this
misconception to rest. If anything, Cyc is the
complement of an encyclopedia. The aim is
that one day Cyc ought to contain enough
commonsense knowledge to support natural
language understanding capabilities that
enable it to read through and assimilate any
encyclopedia article, that is, to be able to
answer the sorts of questions that you or I
could after having just read any article, ques-
tions that neither you nor I nor Cyc could be
expected to answer beforehand.

Our hope and expectation is that around
the mid-1990s, we can transition more and
more from manual entry of assertions to
(semi-) automated entry by reading online
texts; the role of humans in the project
would transition from the brain surgeons to
tutors, answering Cyc’s questions about the
difficult sentences and passages. This radical
change is what it means for Cyc to have a
decade-long projected lifespan.

The Evolution of the 
Representation Language

CycL is the language in which the Cyc knowl-
edge base is encoded. In 1984, our representa-
tion was little more than frames. Although a
significant fraction of knowledge can be con-
veniently handled using just frames, this
approach soon proved awkward or downright
inadequate for expressing various assertions
we wanted to make: disjunctions, inequalities,
existentially quantified statements, metalevel
propositions about sentences, and so on. At
least occasionally, therefore, we required a
framework of greater expressive power. We
were thus led to embed the frame system in a
predicate calculus–like constraint language.

Moreover, there were a number of down-
right ad hoc aspects of the 1984 frame lan-
guage, such as how inheritance worked. We
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D, and, respectively, give them cfs of 94.4 and
94.6. Certainly, neither person intended to
tell Cyc that A is more certain than C or that
D is more certain than B, but this is exactly
what they were doing. These problems led us
to go back to a simple nonnumeric scheme in
which A, B, C, and D would all simply be true
(nonmonotonically, that is, true by default),
and in addition, there would be two explicit
assertions: (moreLikelyThan A B) and (more-
LikelyThan C D).

We conclude this section by listing our
desiderata for the representation language in
which to build our large knowledge base. The
next section goes on to describe the current
state of CycL, the language that strives toward
these criteria. Our point here is that this list
bears little resemblance to what we expected
the language to be like five years ago:

First, the language should have a clear (and
hopefully simple) semantics. The semantics
should be declarative for two reasons: to facil-
itate communication with, and use by, many
different problem solvers, be they human or
machine and, as mentioned previously, to
prevent having to discard or redo the knowl-
edge base when the inference mechanisms
change. 

Second, it should provide certain inferential
capabilities (including verifying conjectures,
finding bindings for variables that make some
statement true, planning) and provide them
efficiently. Why? Only by actually building
applications can the knowledge base be truly
exercised and, ultimately, validated.

Third, it should provide some scheme for
expressing and reasoning with default knowl-
edge. Almost all the knowledge in Cyc is
defeasible. Only about 5 percent is monoton-
ic, and of this amount, only about 1 percent
is definitional (such as the function cousins
being defined as cousins(x) = children(sib-
lings(parents(x))).

Fourth, it should have the expressiveness of
all first-order predicate calculus (FOPC) with
equality (Moore 1986). It should also be able
to handle (nested) propositional attitudes
(McCarthy 1986a) (such as beliefs, goals, pur-
pose, dreads). It should have facilities for
operations such as reification (McCarthy
1986b) and reflection (Weyhrauch 1986).
Each assertion P (fact, rule, and so on) can
have various metalevel assertions about it
that need to be made; for example, who
asserted this and when, what arguments sup-
port P and what arguments counter it, what
arguments does P participate in, what asser-
tions are analogous to P, and in what ways
and to which models (levels of granularity or
other clumpings of mutually consistent asser-

tions) does P belong?
Given this wish list, we could summarize

the major changes in CycL over the past five
years as follows: We started with a frame lan-
guage whose emphasis was more on issues
such as the data structures used, indexing,
and interface. We have since realized the
importance of a declarative semantics for the
language, the need for expressive power, and
the importance of making a clear distinction
between what knowledge the knowledge base
contains and how the knowledge base is
implemented.

The Current State of Cyc’s 
Representation Language

The last several paragraphs considered some
of the issues that heavily influenced the
design of this language. This section presents
the result of our striving to satisfy this wish
list.2

Epistemological Level and 
Default Reasoning

Two of the wish list entries are at odds with
each other: having a clean and simple seman-
tics and providing speedy inference. To
improve inferencing abilities, we want to
include special-purpose representations and
inference routines, procedural attachments,
and so on. However, these make it harder to
provide a simple semantics. Also, although it
is reasonable to expect the semantics of CycL
to remain unchanged, it is likely that new
constructs are going to be incrementally
added to improve CycL’s inferencing. The
addition of such special-purpose constructs
(templates for classification, inheritance, spe-
cial-purpose inference mechanisms, and so
on) is likely to prove bothersome to other
programs that use Cyc, for example, programs
that were written before the new constructs
even existed and, hence, couldn’t take advan-
tage of them.

Therefore, we would like users of Cyc (both
humans and application programs) to interact
with the system at an epistemological level
and not a heuristic level. These terms and the
distinction between them are used here in the
sense of McCarthy and Hayes (1987).
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Two of the wish list entries are at odds . . .
having a clean and simple semantics and
providing speedy inference. 



some abstract conceptual level. For example,
one could eliminate the entire heuristic level,
replace it with a general-purpose problem
solver, and Cyc would merely slow down
(that is, the Cyc knowledge base would
remain unchanged, the same conclusions
would be reachable, the same problems solv-
able, and so on, but at [presumably] a much
slower speed). One way in which some of our
collaborators choose to use Cyc is at arms’
length, accepting only epistemological-level
expressions from the Cyc knowledge base
and using their own inference engines on
them.

The epistemological level is based on a lan-
guage called the Cyc constraint language,
which, as we remarked earlier, is essentially
FOPC with equality, with augmentations for
defaults and reification. It also allows some
amount of reflection of the problem solver
into the language and allows for predicates
such as justifies that relates a sentence Q to
other sentences P1, P2, . . . that a problem
solver used to deduce it. The Cyc constraint
language also uses a number of modals,
including beliefs, desires, and goals, whose
semantics are defined by using the ability to
reify propositions.

The only nonmonotonic constructs used
are the closed-world assumption (CWA) and
the unique names assumption. CWA, in par-
ticular, is used to provide the language with

These observations lead to the conclusion
that the knowledge base should be construct-
ed at two levels, which is exactly what we
have done. The Cyc knowledge base itself,
therefore, exists redundantly at the epistemo-
logical level and at the heuristic level, and an
external program (or human user) can inter-
act with CycL at either of these levels. The
epistemological level uses a language that is
essentially FOPC, with a slightly different
syntax and augmentations for reification and
set construction.3 It gives an account of the
knowledge base in a form that has a simple
semantics and, therefore, is easy to communi-
cate in. In contrast, the heuristic level uses a
variety of special-purpose representations and
procedures for speedy inference. The heuristic
level is the language of choice whenever any
inference needs to be done.

There is a facility for automatically translat-
ing sentences from the epistemological level
into the most appropriate representations in
the heuristic level, and vice versa; it is called
the tell-ask (TA) interface (Derthick 1990)
(figure 1). Therefore, one can type epistemo-
logical-level expressions (that is, in some
form like FOPC) to TA, and they are convert-
ed into the most efficient heuristic-level rep-
resentation.

Both the epistemological level and the
heuristic level are real parts of CycL. The epis-
temological level, in particular, is not just
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Figure 1. Cyc’s Knowledge Base Is Redundantly Expressed at Both an 
Epistemological Level and a Heuristic Level.

A user (human or application program) will usually communicate with Cyc at the epistemological level, and their
utterances are translated by the tell-ask (TA) interface into heuristic-level propositions. The heuristic level consists of
several modules for generating and comparing arguments for and against a given proposition.



nonmonotonicity, and the default reasoning
abilities were designed using CWA and the
notion of arguments. The next subsection
gives a brief description of this, that is, how
default reasoning is done in Cyc; details can
be found in Guha (1990b).

Defaults
The syntactic structure of defaults is identical
to that of defaults in circumscription (McCarthy
1987a). Thus, we represent the statement
“birds usually fly” as follows:4

isa(x Bird) ∧ ¬ab1(x) ⊃ flies(x) .
Intuitively, we want to weaken the mono-

tonic statement “all birds fly” to get the default
“birds usually fly,” and we use the ab1 predi-
cate to do so. To derive conclusions from this
axiom, we use the concept of arguments and
have an argumentation axiom instead of the
circumscription axiom. The intuition behind
this approach is as follows:

We first axiomatize the concept of an argu-
ment as an extension of the concept of a
proof. In addition to the sentences that might
appear in a proof, an argument might also
contain a class of sentences that have been
labeled as assumptions (for example, sentences
of the form ¬ab1(Tweety) are assumptions).
We use the ability to reify sentences to do this
labeling.

If there is an argument for a sentence, we
would like to believe in the truth of the sen-
tence. However, because arguments are a
weaker notion than proofs, it is possible to
come up with invalid arguments; that is,
those that try to make assumptions that are
known to be false. It is okay for an argument
to make assumptions, but if we know that an
assumption made by an argument is false,
then we ought to know enough to ignore this
argument. We explicitly restrict our attention
to arguments that are not yet known to be
invalid. The details of how arguments are
generated in practice, and so on, are discussed
in the section The Heuristic Level: Efficient
Inferencing in Cyc.

It is also possible to come up with argu-
ments for both P and ¬P (and, indeed, to have
multiple distinct arguments for each). Com-
bining arguments is tricky and is handled as
follows: Given a set of arguments for P and
for ¬P, Cyc compares these arguments and
decides what to add to the knowledge
base—P, ¬P , or neither. We do this compari-
son by making arguments first-class objects in
the CycL language and using axioms in the
Cyc knowledge base that capture our intu-
itions of various aspects of default reasoning.
The argumentation axiom, which captures
the gist of this approach, is as follows:(∀ a)
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(argumentFor(‘p, a) ∧ ¬invalidArg(a)
∧ ¬(∃ a1) (argumentFor(‘¬p, a1) ∧ ¬preferred(a,a1)
∧ ¬invalidArg(a1))) ⊃ True(‘p) .
Additional axioms are used to specify when

an argument is invalid (for example,
(True(‘¬p) ∧ inArgument(‘p,a)) ⊃ invalidArg(a))
and axioms that can conclude that one argu-
ment is preferred over another (a few of these
are given later). These axioms form the core
of the real default reasoning.

It is usually not possible to prove that a
better counterargument to some proposition
does not exist or prove that some argument is
not invalid. To deal with this problem, CWA
is made for the predicates argumentFor and
invalidArg, and this closed-world assumption
is what provides the required nonmonotonic-
ity to the language. This axiom uses the truth
predicate True, and to avoid the possibility of
paradoxes, we (following Tarski) allow this
predicate to differ from the actual truth value
of the sentence for certain sentences (those
that are likely to be paradoxical). In other
words, the following is not an axiom schema
in our knowledge base: 

True(‘p) ⇔ p.
The preference axioms and the axioms that

define the predicates argumentFor and invali-
dArg are not part of any metatheory; they are
regular axioms of the knowledge base. The
salient aspect of our approach to doing default
reasoning is that most of the work is done
using axioms explicit in the knowledge base
and not wired into the logic. This approach
provides us greater flexibility and control and
makes it easier to fix problems if inadequacies
are detected. Adding and removing axioms
from the knowledge base is strongly prefer-
able to changing the logic, especially when a
massive knowledge base already exists and
assumes a certain logic.

We currently use a number of different 
criteria for comparing arguments: prefer 
inferences with shorter inferential distance
(Touretzky 1987), prefer causal explanations
(Lifschitz 1987), prefer constructive argu-
ments over nonconstructive ones, and so on.
We are also trying to construct a taxonomy of
standard types of arguments that capture dif-
ferent dialectic patterns. For example, there is
the concept of a narration (one kind of argu-

The Cyc knowledge base itself . . . exists
redundantly at the epistemological level
and at the heuristic level . . .



Statements about the world (as opposed to
statements about a particular microtheory)
have to be within some microtheory or other.
One distinguished microtheory corresponds
to the most expressive microtheory (MEM).
In this article, as a notational convention
unless otherwise mentioned, if no microtheo-
ry is explicitly associated with a statement,
the microtheory in which this statement is
true is taken to be MEM. Most of the discus-
sion of the ontology in this article is of that
in MEM, although the last subsection of this
section does discuss the role of microtheories
in the ontology.

Here, we end our discussion of the episte-
mological level and proceed to a description
of some of the techniques used at the heuris-
tic level to speed up inference.

The Heuristic Level: Efficient
Inferencing in Cyc

The heuristic level is meant for doing infer-
encing. As opposed to the epistemological
level, where we tried to avoid superfluous
constructs, the heuristic level incorporates a
host of logically superfluous mechanisms for
improving efficiency.

The Functional Interface to CycL. The
user can interact with Cyc at the epistemo-
logical level (figure 1) using a set of functions
called the functional interface. The functionality
of each of these is implemented at the heuris-
tic level. The functions are Assert, Unassert,
Deny, Justify, Ask, and Bundle.

Assert: (∑ x KB → KB): Given a sentence σ
and a knowledge base, after Assert(σ, KB), we
get a new (modified) knowledge base in which
σ is an axiom.

Unassert: (∑ x KB → KB): This function is
the “undo” of Assert. After Unassert(σ, KB), σ
is not an axiom (although it might still follow
from axioms in the knowledge base).

Deny: (∑ x KB → KB): This operation is
similar to but stronger than Unassert. It tries
to produce a knowledge base in which the
sentence σ is neither an axiom nor a theo-
rem. Deny is stronger than Unassert in the
case where σ is currently a theorem in the
knowledge base—follows from axioms Assert-
ed into the knowledge base—but not an
axiom. In such a case, Unassert would do
nothing (that is, σ would still be a theorem
afterwards). It is possible that after Deny, nei-
ther σ nor ¬σ is a theorem or axiom, which
contrasts with Assert(¬σ, KB), after which ¬σ
would be an axiom. Thus, Unasserting σ is
weaker than Denying it, which, in turn, is
weaker than Asserting its negation.

ment) that corresponds to giving a sequence
of events that lead to some assertion (from
some starting point) as an argument for why
this assertion might be true.

What aspects of our default reasoning
scheme need more work? Surprisingly, we
would not include the logical formalism
used. However, we would include issues such
as what are reasonable preferences and dialec-
tic patterns. Currently, we are actively
engaged in this research (Guha 1990b).

Microtheories and the 
Representation Language

One of the facilities available in CycL is the
ability to say that a set of sentences consti-
tutes a theory. For example, one set of sen-
tences represents a naive theory of physics
(NTP). Here is a typical NTP sentence, which
says that if something is not supported, then
it falls.5 (Of course, this heuristic is not
always true; it fails for balloons, objects in
outer space, and so on. This theory should
not be used when dealing with such objects.)

ist((∀ x ¬supported(x) ⊃ falls(x)), NTP) .
These theories, such as NTP, are referred to

as microtheories (µTs). They are first-class
objects in the CycL language and are usually
given descriptions related to their scope, when
they should be used, and so on. This facility
is extremely useful in forming theories and
abstractions at different levels of granularity.
In addition to avoiding the inconsistencies
that often accompany the careless merging of
different abstractions, microtheories give us a
convenient formalism for using multiple rep-
resentations, reasoning about when to use
which one, and representing within a context
(the microtheory could correspond to some-
thing like a discourse context). They also
enable us to use contextual information to
simplify the statement of axioms.

The description of the assumptions made
by the microtheory—what is left implicit,
and so on—that is associated with it form its
context (McCarthy 1987b). A distinction is
made between the propositions that constitute
the microtheory (that is, the deductive clo-
sure of the axioms in the microtheory) and
the context associated with it. The context is a
rich (McCarthy and Hayes 1987) object and
usually carries information that can be used
to universalize (Quine 1969) the contextual
representation of the microtheory. The addi-
tion of a fact to a microtheory always
changes the theory associated with it but
need not always change the context of the
microtheory.
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Justify: (∑ x KB → sentences): If sentence
σ is true in the knowledge base, then Justify(σ,
KB) should return a minimal subset of the
knowledge base from which σ can be derived.

Ask: (∑ x KB → truth-value bindings): Ask
is used to test the truth value of a statement
and, if the expression contains some free vari-
ables, to find which variable bindings make it
true. An optional argument (UNWANTED-
BINDINGS) turns Ask into a generator; that is,
each repeated call yields new sets of bindings.

Bundle: (sequence of functional interface
statements): This facility performs a series of
calls to the previous five functional interface
functions as one atomic macro-operation.
This operation is of great pragmatic benefit
for two reasons: (1) The first few operations
might violate some integrity constraints, and
later ones might satisfy them again. (2) The
bundling allows the heuristic level to be
smart about which assertions it has to undo.
For example, suppose we change an axiom
from “Southerners speak with a drawl” to
“Southerners over age 2 speak with a drawl.”
We make this change by issuing an Unassert
and an Assert. Each of these two operations
would cause about n modifications (assuming
an average lifespan of 72 years and a uniform
age distribution in the population of n South-
erners). However, if we Bundle the two opera-
tions, then only n/35 modifications are done
rather than 2 ⋅ n.

The concept of a functional interface, with
functions such as Assert and Ask, has been
around in computer science and AI for some
time (Brachman, Fikes, and Levesque 1986).
We tailored it somewhat for our purposes and
increased its pragmatic usefulness by adding
some new constructs (such as Bundle and Jus-
tify) and teasing apart old ones (such as
Unassert(σ, KB) versus Deny(σ, KB) versus
Assert(¬σ, KB)).

Default Reasoning Modules (The Struc-
ture of the Heuristic Level). Most of the
gain in processing speed at the heuristic level
comes about because of the way we imple-
ment Ask. (Much of the complexity at the
heuristic level arises from the need to do
Deny and Unassert properly, but this is
another issue [Pratt and Guha 1990].) The
structure of the heuristic level is based on
default reasoning. As we mentioned previous-
ly, defaults are implemented in CycL by way
of an argumentation axiom. The argumenta-
tion axiom is just like any other axiom at the
epistemological level. However, because it’s
used often, at the heuristic level, there are
some special procedures for incorporating it
so that certain special cases can be run effi-

ciently. Here, then, are the four modules that
make up the structure of the heuristic level:

Argument Generator: Given a sentence σ,
this module tries to generate an argument for
it. Recall from the section on default reason-
ing that an argument is similar to a proof that
can include assumptions.

Argument Comparator: Given a set {Ai} of
arguments for and against a sentence σ, this
module decides on a truth value for σ by
using knowledge base axioms to check each
Ai for invalidity and decide which noninvalid
Ais are preferred over others.

Argument Retractor: When the truth value
of a sentence σ changes, this module ensures
that truth values of other sentences that
depend on σ are also updated. Not surprising-
ly, the argument generator module is, in prac-
tice, tightly integrated with this module.

Contradiction Resolver: This module is
responsible for detecting and resolving con-
tradictions. For example, suppose we have an
axiom p ⊃ q involving no abnormality literals,
and p is true, yet q is found to be false
(because of arguments for ¬q). This module
would notice such a contradiction and
attempt to resolve it, for example, by retract-
ing some weak (default) assertion that was
used in the argument for p.

Given a sentence σ, Ask first tries to find
arguments for it. If it can, it then tries to find
arguments against it. These arguments are
then compared (which can invoke preference
axioms from the knowledge base and recursive-
ly involve calls on Ask), and the final truth
value is decided based on this comparison.
Note that the comparison process could fail
(the arguments could be incomparable), which
results in neither σ nor ¬σ being concluded.

The representation of default axioms at the
heuristic level is different from that at the
epistemological level. First, all the default
axioms sharing the same ab literal are
grouped into classes. For instance, the set of
all rules whose antecedents (left-hand sides)
contain ... ∧ ¬ab37(. . . ) . . . are grouped into
one class. Second, each class is labeled with
the ab literal (in this case, ab37). Third, there-
fore, we can strip all the ab literals from all
the default axioms. Fourth, although the
argument generator can ignore these labels,
which increases its efficiency, the argument
comparator can still make use of them. How-
ever, certain precautions have to be taken
against the knowledge base appearing incon-
sistent to the argument generator (because of
some default not holding.)

Although the epistemological level has only
two truth values (true and false), the heuristic
level uses five truth values (true, default true,
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tactic structure. Two other schemas are inheri-
tance and automatic classification.

Associated with each such inference
schema are specialized procedures for speed-
ing up this sort of inferencing. For example, a
certain amount of compilation can be done
that drastically cuts down on conjunct order-
ing and unification at run time. Also, the
stack used by Lisp itself can be used instead
of using binding lists. Many of these savings
are similar to those obtained by the Warren
Machine–like compilation of Prolog programs
(Warren 1983). In particular, each schema 
has specialized procedures for recognizing
instances of the schema (for translating from
the epistemological level to the heuristic
level), applying instances of the schema to
derive conclusions, and performing book-
keeping functions such as storing justifications.

We have also built a facility to help a user
add new inference rule schemas. That is, one
specifies a new schema, and Cyc automatical-
ly generates all the code needed to efficiently
implement it—the types of specialized proce-
dures previously itemized. Currently, this
code generator can only handle schemas with
no sentential variables, but even with this
restriction, the code-generating facility is
extremely helpful.

Domain-Specific Inference Modules. The pre-
vious technique—introducing specialized
inference mechanisms—was based purely on
the syntactic structure of the axioms and had
nothing to do with the domain the axioms
dealt with. However, at times, we can exploit
some special properties of a set of domain-
specific axioms or the domain-specific use of
a set of general axioms. Some examples of
such axiom clusters that Cyc currently opti-
mizes in this way are those related to tempo-
ral reasoning and quantity arithmetic. In the
case of temporal reasoning, for example,
many tasks can be formulated as simple
graph-search problems over the graph whose
nodes are time points and whose arcs are
primitive temporal relations (before, after, and
simultaneousWith.)

In other words, a certain set of axioms
about time can be compiled into a graph-
search procedure. It should be noted that
although at the heuristic level, nothing more
than the program might be representing
them, these axioms do still explicitly exist at
the epistemological level.

Dependency Analysis of the Knowledge Base.
Over the years, AI researchers have developed
a number of stand-alone modules (for exam-

unknown, default false, and false) to label
sentences in the knowledge base. True-false
sentences are those that are monotonically
true; that is, the addition of new facts can’t
cause them to be retracted (although even
monotonic axioms can later be explicitly
Unasserted, of course). Default true-false sen-
tences don’t have this property. Unknown is
used for sentences for which there are unre-
solved conflicting arguments (Ginsberg
1987). The presence of five heuristic-level
truth values helps in making the TMS-related
bookkeeping activities more efficient.

A number of the statements at the episte-
mological level are of the form (¬ab-literal ⊃
ground-formula). These are called local defaults
(and simply translate to the ground formula
with a truth value of default true at the
heuristic level), and the heuristic level provides
special support to handle these efficiently.

Speeding Up the Argument Generator
Module. The bulk of Cyc’s time spent
inferencing is done by the argument genera-
tor module. A number of techniques have
been introduced to make the argument gen-
erator (and conclusion retractor) modules
work more efficiently. These techniques fall
into three categories: highly specialized infer-
ence rules, domain-specific inference mod-
ules, and dependency analysis of the
knowledge base.

Highly Specialized Inference Rules. In the
knowledge base, a number of axioms are
instances of the following schema:

(s1 x y) ∧ (s2 x z) ⊃ (s1 z x) .
Here is one such axiom:

(owner x y) ∧ (parts x z) ⊃ (owner z x) .
If the owner of JoesCar is Joe, and one of the
parts of JoesCar is JoesCarsSteeringWheel, then
it’s reasonable to conclude that the owner of
JoesCarsSteeringWheel is also Joe. Here is
another example of an axiom that fits the
same schema:

(lastName x y) ∧ (sonOf x z) ⊃ (lastName z y) .
A new rule of inference, called transfers-

Through, is used at the heuristic level to
exploit the common syntactic structure of
axioms matching this schema. Thus, the pre-
vious two axioms would be represented at the
heuristic level as follows:

(transfersThrough owns parts)
(transfersThrough lastName sonOf) .
Currently, there are numerous such

schemas, each of which has been made into a
rule of inference, each schema corresponding
to a category of axioms with isomorphic syn-
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ple, TMSs) that could be used with any prob-
lem solver. To make them problem solver
independent, their operation was usually
made independent of the structure of the
knowledge base on which the problem solver
was operating. However, we have found that
it is possible to obtain significant improve-
ments in problem-solving efficiency by using
an analysis of the structure of the knowledge
base axioms.

For example, consider the problem of
detecting purely self-justifying sequences of
statements (for example, A justifies B, which
justifies C, . . ., which justifies B, and then A

is retracted, but the rest remain). Avoiding
such situations is a traditional source of
space-time complexity in TMSs. However, a
dependency analysis of the knowledge base
axioms could reveal the circumstances in
which there could possibly be circular justifi-
cations and the set of sentences that might be
involved in the circular justification. Having
this information can vastly reduce the time
required to search for such circularities. For
example, it turns out that in Cyc’s current
knowledge base, (1) only a small fraction of
the 4000 kinds of slots could possibly partici-
pate in circular lines of reasoning and (2)
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Figure 2. Some of Cyc’s Collections.
(a) For millenia, ontologists have derived power through judicious choice of categories and predicates. Here, were see a few of Cyc’s 5000 collections,
related by genl and spec (superset and subset) links. Of course, because such arcs only depict one of Cyc’s 4000 slots, many concepts that are closely
related in the knowledge base (for example, ProcessType and Process) aren’t connected in the diagram. (b) Although we make use of taxonomic clas-
sification, most of the power in the knowledge base derives from the particular axioms (facts, heuristics, and so on) such as the five depicted here
(drawn from naive theories of buying, consuming, and so on). Axioms typically cut across category boundaries; for example, a single assertion about
mouthwash might involve human emotions, cognitive-processing limitations, buying, liquids, hygiene, and containers. (c) Here is the way we enter
the first two of these axioms into Cyc. Free variables (such as buyer, agent) are assumed to be universally quantified. We previously specified a con-
text, a particular microtheory, in which these are full-fledged CycL epistemological-level axioms. Cyc can then lift them, adding clauses to decontex-
tualize them as necessary. (For example, owning an object is only a necessary precondition to consuming it in the context of law-abiding, calm,
responsible parties in a partially capitalistic economic setting, and so on). In each case, the tell-ask interface converts these clauses into efficient
CycL heuristic-leel expressions



the ontology can be found in Lenat and
Guha (1990).

Recall that the epistemological level is meant
for communicating the contents of Cyc inde-
pendent of the inferencing hacks that are used
for efficiency down at the heuristic level.
Hence, most of our discussion of the ontolo-
gy of Cyc’s knowledge base will be at the epis-
temological level, not the heuristic level.

We also mentioned that the knowledge
base is organized in different microtheories
along with information about when to use
which microtheory, the information that is
implicit in each microtheory, and so on. Dif-
ferent microtheories can use different abstrac-
tions of time, actions, space, objects that are
known about, and so on. In this section,
most of our discussion is in the context of the
most expressive microtheory (MEM). MEM’s
expressiveness is a good measure of the
expressiveness of the Cyc ontology as a whole.
Therefore, the assertions we make have no
explicitly mentioned microtheory; it should
be assumed to be MEM. In the subsection
Microtheories and the Ontology, we discuss
the need for, and the impact of, having mul-
tiple microtheories.

Some Basic Concepts and Distinctions

The ontology of Cyc is organized around the
concept of categories. We also refer to them as
classes or collections. The categories are orga-
nized in a generalization-specialization hier-
archy (a directed graph, not a tree because
each category can have several direct general-
izations) (figure 2).

The Cyc predicates relating a category to its
immediate supersets and subsets are, respec-
tively, genls and specs. The instances of a cate-
gory are its elements or members; the inverse
of this relation is instanceOf. It should be
noted that unlike many frame systems, a
strong distinction is made in Cyc between the
two relations instances (elements) and specs
(subsets). The relation between Person and
MarvinMinsky is different from the relation
between Person and ComputerScientist.
Another example is genls(Texan, American)
and instanceOf(Lenat, Texan). Although we
frequently use set-theoretic notions to talk
about collections, these collections are more
akin to what Quine (1969) termed natural
kinds than they are to mathematical sets.
This distinction becomes apparent later when
we start ascribing various intentional proper-
ties to collections.

Because the generalization-specialization
hierarchy is important, we start off by dis-
cussing some of its highest nodes, why they

such garbage-collectable chains are precisely
characterizable and, hence, easily recogniz-
able when they occur. These two knowledge
base–specific properties make the problem of
detecting them computationally feasible in
practice, even though this detection is com-
plex and expensive in the worst case.
Although these modules are now making
strong assumptions about the structure of the
representation used by the problem solver,
the resultant improvements in efficiency are
worth it (Guha and Lenat 1989a).

In addition to the specialized inference pro-
cedures, Cyc has a general-purpose inference
mechanism that is capable of a much larger
(but incomplete) category of inferences. This
general inference engine is similar to a unit
preference resolution theorem prover, and
with this inference mechanism, CycL is com-
plete if attention is restricted to a horn subset
of the knowledge base.

When dealing with mechanisms other than
the domain-specific inference mechanisms, a
depth-first iterative deepening procedure is
used for the search. Resource-limited reasoning
is implemented by using indexical functions
that specify various bounds on resources
(such as the time available, the cutoff depth
for search).

In addition, part of these inference mecha-
nisms is represented in Cyc, which allows
Cyc to use an agenda to perform a best first
search, using various heuristics to control the
search strategy. However, to date, the perfor-
mance of the iterative deepening strategy
alone has been good enough that this met-
alevel (agenda) mechanism is rarely used.
Here, we end the discussion of CycL and pro-
ceed to our discussion of the contents of the
knowledge base.

The Current State of 
Cyc’s Ontology

The ontology of Cyc primarily includes cate-
gories and things in the world; it also includes
reified assertions and internal machine objects
such as strings, numbers, lists, and program
code (figure 2).6

The next subsection introduces some of the
basic concepts and distinctions used; the latter
subsections discuss representation issues such
as time, events, agents, and causality. One
caveat: This discussion is only meant to give
the flavor of the kind of things that are in the
Cyc knowledge base; it is by no means a com-
prehensive overview of what is there, nor
does it adequately capture the breadth of the
current knowledge base. Further details on
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are in certain unintuitive genls-specs relations
to other nodes, and so on.

The universal set is called Thing. One of its
partitionings is into the two sets InternalMa-
chineThing and RepresentedThing. Instances of
InternalMachineThing include the number 5
and the string “DOG,” that is, things for
which the representation is provided by the
Lisp substrate on which CycL is written.
Instances of RepresentedThing are things such
as Chair for which only a representation is
provided by CycL. This distinction is useful
when deciding whether to use model attach-
ments (Weyhrauch 1986).

Another partition of Thing is into Individu-
alObject and Collection. IndividualObjects are
elements such as Fred, TheWhiteHouse, and
TheFourthOfJuly1990, that is, the non-sets.
They can have parts but not instances.
Instances of Collection include Thing (the set
of all things), Chair (the set of all chairs),
Texan (the set of all Texans), Dining (the set of
all dining events), and so on.

Predicates are all strongly typed, and a
single category from the Cyc hierarchy has to
be specified as the type for each argument.7
This was a conscious design decision and has
tremendous heuristic power as the knowledge
base is built. Namely, when knowledge enter-
ers have an urge to define a new kind of slot,
they must either select or define the domain
of the slot. Usually, the slot is separately
worth existing only if the domain is; so, our
single category constraint frequently gives the
knowledge enterers a well-needed dou-
blecheck on what they were about to do.

It should be noted that predicates such as
age and weight can’t legally be applied to col-
lections (such as Chair). To rephrase, because
Chair is a set, an abstract mathematical entity,
it can’t have a weight or an age (it can, of
course, have many other slots such as cardi-
nality). Of course, we could discuss weight
(Chair905)—the weight of an element of the
set Chair—but this element is different.

In addition to collections of individuals, we
also have collections of collections. For exam-
ple, PersonType is a set whose elements include
Person, ComputerScientist, and Texan, which
themselves are collections whose elements
include Lenat, Bledsoe, and so on. The hierar-
chy folds into itself at this level; that is, we
don’t have collections of collections of collec-
tions, and Collection is an instanceOf itself.8

The predicates themselves are first-class
objects in the language and can be used as
arguments to other predicates (this is a
second-order–like construct that can easily be
first ordered). Although some of our editing
tools (and internal data structures) gather

into frames the set of assertions that are
binary predicates sharing a common first
argument, this distinction is merely a heuris-
tic-level (and user interface) one; there is
nothing special about binary versus other
arity predicates at the epistemological level.

We are now ready to discuss some of the
representation issues. First, we discuss the dis-
tinction between Substances and IndividualOb-
jects; then we proceed to how we represent
events, causality, intelligent agents, and so on.

Substances versus Individual Objects
If you take a piece of wood, and smash it into
10 pieces, each of them is still a (albeit small-
er) piece of wood. However, if you do the
same to a table, each piece is not a (smaller)
table. Substances are usually referred to in lin-
guistics and philosophy as mass nouns; some
of them are obvious (sand, peanut butter, air)
and some less so (time, walking). We view the
concept PeanutButter as the collection of all
pieces of peanut butter.

Every individual is made of some substance
or other. If we don’t have a single type of sub-
stance of which this individual is composed,
we can define a new one (BertrandRusselStuff?
ugh!); use a more general substance (Animal-
Matter); or even fall back on the most general
kind of substance, Substance.

Conversely, every piece of any substance—
say, this particular piece of peanut butter over
here—is clearly an individual. This leads to
some interesting relations between substances
and individuals:

Because every individual is a piece of some
substance, IndividualObject ⊂ Substance. How-
ever, any particular piece of any substance is
an individual, and because the category corre-
sponding to a type of substance is nothing but
the set of its pieces, Substance ⊂ IndividualObject.

Thus, rather surprisingly, the two properties
are extensionally equivalent, which explains
the IndividualObject = Substance node in
figure 2. We still choose to distinguish
between them because they have different
intensional descriptions. The different substances
(Wood, PeanutButter, Air, and so on) are all
instances of the collection SubstanceType, and
the collections of individuals (Table, Person,
Number, and so on) are instances of Object-
Type. We shortly describe how this difference
in intensional description is made use of.

Certain properties are intrinsic (that is, if an
individual has them, slices of this individual
also have them, at least as a default), and
other properties are extrinsic (that is, the
parts don’t inherit this property from the
whole). The notion of intrinsicness is closely
related to that of substances: Consider a par-

The predicates
themselves
are first-class
objects in the
language and
can be used as
arguments 
to other 
predicates . . .
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tially and temporally—and we now examine
them both. This leads to more general issues
about events that occur over some time inter-
val and objects that exist over some time
interval.

We can cut something up spatially (as we
did with the piece of peanut butter), but we
can also cut it up temporally. For example,
consider a process such as walking. In Cyc’s
ontology, we have the collection Walking,
which is the set of all walking events. Consid-
er one of its instances, a particular event in
which, say, you walk to the corner mailbox
and back home. Imagine a videotape of this
event, and now consider some contiguous
one-minute segment of the tape, say, the
third minute of it. If anyone watched just
this minute, they would report that this
minute was itself a (albeit shorter) walking
event, that is, another instance of Walking.

In the last subsection, we noted that the
class Wood has an interesting property: When
a member of the class (for example, Wood-
enTable001) is carved into several pieces, each
one is still an instance of Wood. We then said
that Wood is a type of substance (that is,
instanceOf(Wood, SubstanceType)), and we
could use such substance-like categorization
to decide on intrinsicness of properties. Here,
we are seeing an analogous phenomenon: A
class Walking, which is a set of events, has the
property that when a member of the class is
temporally carved into pieces, each one is
still an instance of Walking. We say that Walk-
ing is a type of temporal substance, a type of
process. That is, Walking is an instance of Pro-
cessType and a spec of Process. This analogy
turns out to be more than superficial. Indeed,
ProcessType is a spec of SubstanceType; so,
Walking is an instance of SubstanceType. Sub-
stanceType is partitioned into TangibleSub-
stanceType and ProcessType . Wood , for
example, is an instance of TangibleSubstance-
Type.

Similarly, ObjectType is currently parti-
tioned into TangibleObjectType and
EventType. Although Walking is a type of pro-
cess, WalkingToTheMailboxAndBack is not. If
you imagine the third minute of the 10-
minute WalkingToTheMailboxAndBack event, it
is still an instance of Walking, but a stranger
watching just this minute would not say that
it was an instance of someone walking to a
mailbox and back home—neither your home
nor the mailbox might be visible anywhere
on the videotape during this minute! The
relationship here between Walking and Walk-
ingToTheMailboxAndBack is indeed the same
as the one between Wood and Table. Table
is an instance of TangibleObjectType, and

ticular table made entirely of wood—Table103.
It inherits various default properties from
Wood, which is the kind of substance it’s an
instance of (properties such as density, flash
point), and it inherits other properties from
Table, which is the kind of individual object
it’s an instance of (properties such as number
of legs, cost, size). The former properties are
intrinsic; the latter are extrinsic. This is no
coincidence! We have noticed that an object
(typically) inherits its intrinsic properties
from whichever instances of SubstanceType
it’s an instance of, and it inherits extrinsic
properties from whichever instances of
ObjectType it’s an instance of.

Thus, we now have a way of predicting for
most predicates P whether it will be intrinsic.
Namely, see whether P’s domain is an instance
of SubstanceType or ObjectType. Now we see
the importance of having collections of col-
lections; we could actually dispense with the
concepts Substance and IndividualObject
(because they are coextensional), but we can’t
do without SubstanceType and ObjectType.

For each type of substance, the granule
predicate associates are the building blocks
out of which the substance is built; for exam-
ple, granule(Wood, PlantCell), granule(Sand,
GrainOfSand), and granule(ThrongOfPeople,
Person). Considering a portion of a substance
smaller than a mob of its granules is risky;
many of the default properties are violated as
one approaches this level of granularity. Strict-
ly speaking, we could conceptually carve a
throng of people into all their heads and the
rest, and neither alone would be an instance
of ThrongOfPeople. Thus, we place a further
restriction and say that the substancehood
principle applies not only to portions much
bigger than a granule but also only to por-
tions that are just a contiguous mob of gran-
ules. As one drops below the grain size of a
substance, one finds individual objects
(which, in turn, are made out of substances).
For example, MilitaryHardware is a kind of
substance (that is, an instance of Substance-
Type); its granules include guns and tanks,
which are individual objects. Each instance of
Gun is, in turn, made of some substance such
as Iron. The granule of Iron is IronAtom, which
is an ObjectType, and so on. This alternating
individual-substance-individual-. . . continues
at higher and lower (particle physics) levels.

Processes, Events, and Persistent
Objects

To this point, we have used the terms piece
and cutting up in a loose fashion. Actually,
these terms can be used in two senses—spa-

We can cut
something 

up spatially
. . . but we

can also 
cut it up 

temporally. 
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WalkingToTheMailboxAndBack is an instance of
EventType.

Earlier we saw that, surprisingly, Substance
and IndividualObject were coextensional; with
a similar argument, it turns out that Process
and Event are coextensional. This is why Pro-
cessType and EventType are actually the more
useful collections to have explicitly represent-
ed rather than Process and Event.

There are now two types of intrinsicness as
well: A property can be spatiallyIntrinsic or
temporallyIntrinsic. If you imagine the particu-
lar event in which you walked to the mailbox
and back home, it is an instance of Walking
(from which it inherits default values for rate
of speed, step size, amount of attention
required, and so on) and an instance of Walk-
ingToTheMailboxAndBack (from which it
inherits default values for destination, dura-
tion, and so on). Sure enough, this third
minute of the videotape would agree with the
entire video on properties such as rate of
speed but would differ radically on properties
such as duration. rateOfMotion is temporallyIn-
trinsic, just as density is spatiallyIntrinsic.

Consider Table001, a particular table, an
instance of the category Table. It persists for a
lifetime, an interval of time before and after
which it doesn’t exist. Consider a temporal
slice of Table001, such as the decade it was
owned by Fred. This slice is also an instance
of Table. This fact is interesting because it
means that the category Table is an instance
of ProcessType, and Table001 is an instance of
Event! The process going on is existing.

Not surprisingly, a number of categories
exist in our ontology whose instances are
space-time chunks that exhibit sufficiently
persistent properties that it makes sense to
associate a notion of identity with these
objects. The category of such things is called
SomethingExisting, and this category is an
instance of ProcessType. Because all physical
objects (which have any persistent identity)
exhibit this property, TangibleObject is an
instance of ProcessType; so, anything that is
spatially substance-like is also temporally sub-
stance-like, although the converse is not true.

This view of concepts such as Lenat or
Table001 (that is, as Events) is interesting. We
view these objects as space-time chunks, and
we call the temporal pieces of these—for
example, LenatDuring1990, Table001While-
BeingEatenOn—subAbstractions of the larger
piece. SubAbstractions can, of course, have
further subAbstractions. Each maximal sub-
Abstraction (for example, Lenat or Table001) is
called an Entity; that is, entities cannot have
superAbstractions. Being space-time chunks,
these subAbstractions have temporal proper-

ties such as duration (the duration of Lenat is
his lifespan), startingTime and endingTime.9
This subabstraction scheme shares similarities
with the histories approach of Hayes (1985).

Not all objects that have temporal extents
need exhibit enough persistence to warrant a
persistent identity. Consider Roger dining at a
restaurant one evening. We might consider a
system consisting of Roger, the waitress, the
table, cutlery, food, and so on, interesting
enough to create an explicit object Roger-
DiningEvent2317 to represent this system.
However, this object has no temporally persis-
tent properties, has poorly defined bound-
aries, and is of little interest after Roger walks
out (except perhaps as an example in an AI
article). Such objects are instances of Some-
thingOccurring, which is another important
instance of EventType; these objects corre-
spond to names that usually go by the names
of actions, scripts, or processes, and they are
rich objects (McCarthy and Hayes 1987).

The parts of an instance X of SomethingOc-
curring are referred to as its actors. These parts
include all the persistent objects (that is,
instances of SomethingExisting) that are
involved in X. The actors of Roger-
DiningEvent2317 include the waitress, the
food, the table, Roger, the bill, and so on.
There are useful specializations of actors, such
as performer, objectActedUpon, and instru-
mentInAction. The various actors in an event
usually undergo some change either during or
after the event occurs (that is, the subAbstrac-
tions of the actors during or just after the
event are different from the subAbstractions
just before).

No fixed set of slots appears in an action
such as RogerDiningEvent2317. The ones that
appear could depend on what happened there
and how much Cyc knows about it; and in
general, more details can always be added
later. RogerDiningEvent2317 can later be arbi-
trarily elaborated along any dimension, for
example, by specifying P(Roger-
DiningEvent2317) for predicates P that were
not known at the time that Roger-
DiningEvent2317 was 
created!

It should be noted, however, that no ad hoc
distinction is made about what kinds of
events can cause changes in the properties of
instances of SomethingExisting. In fact,
because some of the properties of things
change simply by their existing (for example,
their age), it could well be the case that the
properties of something change substantially
even though it was not an actor in any
instance of SomethingOccurring.

Any instance of Event can have temporal
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would only need O(n + m) objects.
A vast majority of the statements we would

like to make relate coTemporal objects; that is,
the temporal extents of the objects related is
the same. For example, FredIn1972 could not
be married to EthelIn1958. Similarly, Fred
lived in House001 from 1965 through 1975
means that livesIn(FredFrom1965To1975,
House001From1965To1975).11 To exploit this
regularity, we use the predicate holdsDuring.
Instead of creating innumerable pairs of con-
cepts never again needed (FredIn1958, Ethe-
lIn1958; FredFrom1965To1975 and
House001From1965To1975; and so on), we
just assert 

holdsDuring(Fred, livesIn, House001, 1965-    
1975)

and 
holdsDuring(Fred, marriedTo, Ethel, 1958).

Similar constructs that allow temporal
extents to be associated with reifications of
propositions are used when dealing with
predicates of arity greater than two.

It turns out to be notationally much sim-
pler to write complex axioms (where specific
instances of SomethingExisting are replaced by
variables) using the subAbstraction formalism,
but it is more efficient to inference using the
holdsDuring predicate. The heuristic level pro-
vides special support for doing exactly this
bifurcation: allowing the expressive but inef-
ficient Subabstraction formalism for stating
axioms but using the more efficient holdsDur-
ing predicate for doing inference whenever
possible.

In addition to instances of SomethingExist-
ing, such as Fred , and instances of Somethin-
gOccurring, such as FredBeingBorn, we also
recognize changes in properties of persistent
objects as first-class events. If Fred was
hungry before going to the restaurant and
not hungry afterwards, we can consider this
change as an object. Formally, this corre-
sponds to reifying a sentence that specifies
that he was hungry at some time and not
hungry at some later time into an object and
making this resultant object an event
(because one can associate temporal proper-
ties with it).

Temporal Projection. When one of the
properties of an instance of SomethingExisting
changes, it’s not likely to affect all (or even
many) of its other properties (McCarthy and
Hayes 1987). For example, when Guha gets a
haircut, it doesn’t affect his address, lan-
guagesSpoken, birthDate, and so on. This fact
is not surprising because a useful set of prop-
erties is useful in part because the properties
are largely independent.

properties (duration, endsAfterTheStartOf, and
so on). We use two abstractions of time to
specify these temporal properties: interval
based and set based.10 Let’s first discuss the
interval-based abstraction of events. We can
define a number of relations between events
using the two primitives before and simultane-
ousWith that can hold between the starting or
ending times of these intervals (which might
have discontinuities in them). Thus, for
example, we define the binary temporal rela-
tion startsBeforeStartOf as

(∀ x,y) (startsBeforeStartOf(x, y) ⇔ before
(startingTime(x),startingTime(y))) .

Why do we need a second abstraction of
time? The interval-based abstraction of time
makes it awkward to say things such as
“people don’t eat and sleep at the same time”
because we are not dealing with a single
convex interval. In such cases, it is easier to
abstract the times when x is eating and the
times when x is sleeping as sets of points.
Then, based on this set-based abstraction, we
use set-theoretic relations such as intersects,
subset, and disjoint to state axioms such as
“people don’t eat and sleep at the same
time.” In this case, the sentence would just be
an assertion that for each person, the piece of
time they’re eating and the piece of time
they’re sleeping, viewed as sets of points,
have an empty intersection.

It is interesting to note that by associating
temporal extents with objects as opposed to
reifications of propositions, we get a certain
added expressiveness. For example, it is easy
to express statements of the form “Fred when
he was 39 liked his house as it had been 20
years earlier” in this formalism, and it is diffi-
cult to do so with formalisms that associate
time with propositions (or their reifications).
However, there is a high cost associated with
this expressiveness. Given n entities and m
intervals, we can have as many as n ⋅ m sub-
Abstractions (that is, have to create O(n ⋅ m )
objects) using the set-of-points-based abstrac-
tion; using the interval-based formalism, we
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Associated with each ground formula is an
interval of persistence. Thus, if we knew that
Fred was happy at time t0, and the persistence
interval of this time was I1, then given any
point in time between t0 and t0 + I1, we can
conclude that Fred was happy at this time
point. Usually, we associate default periods of
persistence with classes of propositions by
using axioms, which are called temporal pro-
jection axioms. These axioms enable us to pro-
ject (infer a good guess for) Fred’s name and
gender years in the future or past, his hairStyle
months in the future or past, his mood sec-
onds in the future or past, and so on, based
on the values of these attributes at some
given time.

These temporal projections are only
defaults. If the evidence is contrary to these
projections based on particular actions that
have taken place, this contrary evidence usu-
ally overrides these projections. Also, if an
event that is capable of changing this proper-
ty is known to have taken place, even if the
effects of the event can’t be computed (possi-
bly because of missing information), we don’t
project this property across such an event.

Associating specific finite periods of persis-
tence with propositions has advantages over
using a frame axiom (McCarthy 1987a) to
allow for extended projection. It provides a
simple scheme for accumulating the informa-
tion at a finer granule (regarding the possibili-
ty of different events capable of changing this
property that are likely to occur) into a coars-
er granule in terms of this interval. However,
this association introduces the following
problem: If our knowledge that Fred was
happy (or a gun was loaded) at t0 came from
some source other than temporal projection,
we are willing to say that until time t0 + I1,
he’s happy (or the gun is still loaded). Howev-
er, we don’t want to repeat this argument and
say that at time (t0 + I1) + I1 he’s still happy,
and the gun is still loaded. That is, we want to
project only from a base time point where we
had this other source of information (that is,
some justification other than temporal pro-
jection) about the fact in which we are inter-
ested. Notice how we escape from this classic
problem by making use of the ability to
explicitly refer to justifications for facts
(which we obtained using reflection) to state
this dependence (Guha 1990a).

Temporal projection has more to it than
just a frame axiom. We mentioned earlier the
concept of a narrative as a kind of argument.
These narratives, together with argument
preference criteria based on notions of causal-
ity, are used to actually do the temporal pro-
jection. The details of this can be found in

Guha (1990b).

Causality. Most treatments of causality (in
AI) proceed by labeling some appropriate
subset of occurrences of material implication
as causal. We do this labeling by using a
causal relation whose argument is the reifica-
tion of a sentence involving a material impli-
cation. For convenience, we refer to ((p ⊃ q) ∧
(causal ‘(p ⊃ q))) as (Cause p q). Let us take a
closer look at the axioms that specify the
meaning of Cause:

First, suppose we assert (Cause p q). Then 
it follows that (p ⊃ q). In other words, Cause 
is a strictly stronger notion than material
implication.

Second, suppose (Cause p q), and p and q are
ground sentences and true. Then p and q
must refer to events (which in Cyc is any-
thing that can have temporal attributes). That
is, p and q must have at least one object con-
stant that is an event.

Third, suppose (Cause p q). Then every
single event referred to in p must startBefore-
TheEndingOf every event in q.

Fourth, given any atomic ground sentence
q that refers to an event, either q should be
basic, or there should be some sentence p
such that (Cause p q) is true. Intuitively, q
being classified as basic corresponds to the
notion of it being unexplainable.

Fifth, given a statement of the form (Cause
p q), either this statement is “basic,” or a
sequence of sentences exists of the form
(Cause p a), (Cause a b) . . . (Cause m q), that is,
some mechanism that implements this causal
relation.

Both the fourth and the fifth axioms are
extremely strong statements to make, which
is why the notion of basic sentences was
included. No commitment is made about
which occurrences of implication are to be
labeled as causal. The aim of the previous for-
malism is to provide a facility to state and
experiment with various heuristics for doing
just this labeling. As with default reasoning,
we chose to have axioms in the knowledge
base provide the guidance and decision making
rather than wiring it in in some fashion.

Actions and Concurrent Processes.
Each action (that is, instance of SomethingOc-
curring) has a set of axioms associated with it
specifying its preconditions, its postcondi-
tions, and constraints on the actors during
the event. A tangible object is a structured
arrangement of its physicalParts (for example,
Table001 breaks down into its legs, top, and
so on). In much the same way, an action is a
constrained arrangement of its subEvents and
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one can provide only descriptions and not
definitions of the more complex actions in
terms of their subEvents. In such cases, the
more complex actions are not merely for
notational convenience but are an epistemo-
logical necessity.

One of the problems that arises with pre-
dicting the effects of actions on the partici-
pating actors is the possibility of concurrent
events. Our solution for this problem is as fol-
lows: Cyc gathers all the co-temporal events
Ei (cutting up events if required) that affect a
particular property and collects them into a
single new event E. Cyc then computes the
net effect of E on this property from the
subEvents of E (suppressing the direct updat-
ing of the property by the subEvents). It
should be noted that the agglomeration is
necessarily a nonmonotonic process because
a closed-world assumption has to be made
while collecting the Ei.

Another thorny issue is how to handle, for
example, the weight of (the subAbstraction)
of FredSmith on a particular day because it
obviously fluctuates slightly from moment to
moment. More generally, when dealing with
subAbstractions of a reasonable duration, it
becomes hard to specify values for most tem-
porally intrinsic numeric attributes because of
the (often slight) changes in the value of the
attribute over the period of the subAbstrac-
tion. To overcome this problem, we use a
class of terms corresponding to intervals in
the quantity space (of the attribute). These
intervals can be named (for example, around
180 pounds) and in the extreme can also be
open in one direction. A calculus for perform-
ing simple mathematical operations with
these intervals (provided by CycL) makes it
relatively easy to use both qualitative and
quantitative specifications for attributes,
switch between them, and so on. Another use
for these interval-based quantity terms is to
specify defaults for numeric attributes (for
example, height, weight) for categories that
exhibit some but not too much variation in
the value of these attributes (for example, the
weight of newborn humans).

Interval-based quantity slots are also useful
for dealing with quantities for which no
acceptable measurable scale or measuring
instruments have yet (or perhaps ever will) to
be defined: happiness, alertness, level of frus-
tration, attractiveness, and so on. Despite the
lack of absolute units of measure, mileposts
for these attribute values can be defined, and
partial orders and even crude calculi can be
developed.

Composite Objects and Agents

actors; for example, RogerDiningEvent2317
breaks down into subEvents such as ordering
food, eating, and paying the bill and actors
such as Roger, the waitress, and the food,
with restrictions on their arrangements and
properties. Both events and tangible objects,
then, can have a structure slot. An entry on a
structure slot is a Structure, which, in turn,
lists the parts/subEvents and the constraints
on them. Several entries might be on a struc-
ture slot corresponding to orthogonal decom-
positions. It is significant that the constraints
themselves, in both the action and tangible
object cases, are often similar. For example, a
set of subEvents or physical parts might be
linearly sequenced or partially ordered (in
time or space, respectively), nested in series,
and so on.

Given a physical object and its parts, it is
often possible to distinguish between differ-
ent classes of parts. For example, the parts of
most tables can be classified into parts meant
for providing support to the top, the top
itself, parts for decoration, and so on. We
usually associate a predicate (which is an
instance of PartSlot and a specSlot of physical-
Parts) with each of these classes and use these
predicates to relate the parts to the overall
object (rather than just using the single predi-
cate physicalParts.)

A similar approach is taken to relating the
parts of an action to the action. When deal-
ing with actions, there are two important cat-
egories of parts—the actors and the
subEvents—and there are separate categories
of slots that are used to relate the actors to an
action (the ActorSlots) and the subEvents to
the event (the SubEventSlots). The ActorSlots
define the roles played by the different actors
in the event (performer, victim, instrument,
and so on). Given an action and a participant
actor, there are three subAbstractions of the
actor related to this action, namely, the sub-
Abstraction of the actor just before, during,
and after the action. In practice, we associate
the entities of the actors with the action
(through the ActorSlots) and then use three
ternary predicates (subAbsOfActorBefore, sub-
AbsOfActorDuring, and subAbsOfActorAfter) to
specify the exact subAbstractions of the actors.

It should be noted that there are no primi-
tive actions into which all actions are broken
down. That is, the actions are not merely
macros introduced for notational conve-
nience (for use instead of more complex
sequences of primitive actions). We eschew
primitive actions because we want to be able
to reason at different levels of abstraction,
and the a priori assigning of a set of actions
as primitives goes against this ability; often,
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In addition to purely physical objects (such as
tables and rocks), objects such as books and
people exist with which we would like to
associate an intangible aspect such as a mes-
sage or a mind (which also would have a tem-
poral aspect). Given such a composite
tangible-intangible object, we can separate
the purely tangible parts from the purely
intangible and separately represent both of
them explicitly as well as represent the com-
posite. The purely intangible parts are
instances of IntangibleObject, the purely phys-
ical parts are instances of TangibleObject, and
the composition is an instance of Composite-
TangibleIntangibleObject.

The most important subset of Composite-
TangibleIntangibleObject is Agent—the set of
intelligent agents—and this subsection con-
siders some aspects of representing agents.
Agents include people (and most macroscopic
animals), computer programs, corporations,
and other things with intelligence, purpose,
and (frequently) rationality.12 Let us first con-
sider why we want this distinction between
the physical and nonphysical aspects of
agents. Consider representing the Franken-
stein monster at some point in time. We
would like to be able to say that his body was
n years old, his mind was m years old, and the
composition was k years old. Rather than
introduce new predicates such as ageOfMy-
Mind, ageOfMyBody, amountOfTimeSinceMy-
MindAndBodyWereJoined, and so on, we
would like to use the single existing predicate
age; besides being simpler and cleaner, this
predicate also lets us fully use the axioms
involving age that are already available.

To deal with the previous example, we need
to be able to explicitly talk about the physical
and mental extents of a composite. Having
made this distinction (and relating these
using the predicates physicalExtent and men-
talExtent), we associate weight not with the
mental part of the Frankenstein monster nor
with the composite part but only with the
physical part; similarly, IQ is associated only
with the mental part. Finally, age makes sense
for all three aspects and has a different value
for all three.

This scheme has the advantage of separating
the physical aspects of composites from their
mental aspects and allows us to talk about
aspects that might apply to both with differ-
ent values (age, interestingness, likedBy, and so
on). However, in most cases, there is not a
single predicate that can be used and has a
different value for two or more of these units
(physical extent, mental extent, composite).
We would like to make use of this regularity.

In other words, we don’t mind having three

separate concepts for Frankenstein’s mon-
ster—he was rather unusual after all—but we
shouldn’t need to have three separate con-
cepts for every composite if nothing conflicts
from one to the other. We added the cate-
gories PartiallyTangible (a spec of SomethingEx-
isting and a genl of TangibleObject) and
PartiallyIntangible (a spec of SomethingExisting
and a genl of IntangibleObject); so now, Com-
positeTangibleIntangibleObject is a spec of
both of these new Partially . . . collections. IQ,
for example, now makes sense for PartiallyIn-
tangibleObjects, and weight makes sense for
PartiallyTangibleObjects, and so on. Thus, we
can state IQ, weight, and all the other proper-
ties right on the composite unit.

If we happen to be representing an excep-
tion, such as the monster, in which some
property has a different value for the physical
or mental extent, then we can create the
appropriate instances of TangibleObject and
IntangibleObject, just as we did previously. As
a default, we also inherit the properties that
talk about physical (mental) properties to the
physical (mental) extents. This framework
gives both the expressiveness of the separa-
tion of physical and mental parts and the effi-
ciency of not doing this separation unless it is
required.

A full description of the various issues relat-
ed to agenthood that have been and are being
considered in Cyc would require more space
than is available here, so we just mention a
few of them. One of our recent technical
reports (Guha and Lenat 1989b) deals exclu-
sively with this topic.

Agents can be collective (such as organiza-
tions and institutions) or individual (such as
people). Each agent can have one or more
attitudes toward any given proposition; some
of the propositional attitudes currently used
in Cyc include beliefs, goals, dreads, purpose,
and desires. We now consider some issues
related to these propositional attitudes.

A primitive notion of awareness is incorpo-
rated as follows: Each agent has a set of terms
and predicates s/he is awareOf. An agent
cannot have any attitude toward a sentence
that involves terms s/he is not aware of. This
restriction is introduced to keep us from, for
example, talking about Aristotle’s beliefs
about the Space Shuttle.

Attributing our own beliefs to other agents
(with whom we might never have directly
communicated) is something frequently
done. Sometimes this attributing is good (for
example, when the traffic light in front of
you turns green, you assume that the drivers
on the cross-street share your beliefs about
what this green light means), and sometimes
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and achieve. Moreover, A believes that P will
become true because of this event E. The con-
cept of purpose allows us to (write axioms
that will) decide when an agent will partici-
pate in (or pull out of) an event.

Agents can enter into Agreements with
other agents; some of the parties to an agree-
ment might be individual agents, and some
might be collective. This activity is one of the
most important, frequent ones that agents
carry out, and we use the remainder of this
subsection to discuss it.

An agreement defines a set of propositions
that all the participants share (although they
might have different propositional attitudes
toward the various clauses of the agreement!).
In addition, the Agreement might also assign
certain responsibilities (logically, these are
also propositions) to specific participants.
Agreements also usually specify certain puni-
tive or remedial actions to be taken in case
these responsibilities are not fulfilled. If the
agent performing these punitive actions is a
LegalSystem (such as a Government or Govern-
mentalAgency), then the agreement is said to
be a LegalAgreement.

We distinguish between agreements in
which the event that enrolled a particular
agent was one in which s/he voluntarily par-
ticipated and ones in which s/he didn’t par-
ticipate voluntarily. For agreements an agent
involuntarily participates in, the constraint
that s/he shares the common beliefs of the
agreement is slightly relaxed.

As a default, collective agents have one or
more special types of agreements associated
with them, such as their charter and articles
of incorporation. Often, an organization or
institution will itself have (or at least act as if
it has) certain desires, dreads, purposefulness,
authority, and so on, that are not present in
most (or perhaps even any) of the partici-
pants or members of the organization. Often,
such attitudes and goals are captured in, or
even caused by, the special agreements it par-
ticipates in.

Microtheories and the Ontology

The formalisms discussed in the previous few
sections try to provide a general and expres-
sive framework for representing various
aspects of the world. However, as our initial
statements claimed, much of the power in
Cyc comes from specific partial solutions,
simplified models (of time, space, a domain,
and so on) that work in certain common but
restricted situations and not from overarch-
ing use-neutral formalisms.

The use of single abstraction, no matter

it’s bad (for example, cross-cultural mirror
imaging has led to innumerable political dis-
asters). A class of axioms called the belief pro-
jection axioms enables Cyc to efficiently do this
sort of mirror imaging and explicitly record
separate beliefs when they are known. These
belief projection rules themselves are moder-
ately interesting because they describe what it
means to be a public figure, what it means to
be commonsense knowledge, and so on.
CycL provides special support to efficiently
handle these rules at the heuristic level.

Agents can be in control of (the truth value
of) propositions, which means that the con-
trolling agent can perform the requisite
actions that determine the proposition’s truth
value. For example, a robber holding a gun is
in control of whether the gun fires and at
whom. The truth value chosen by the con-
trolling agent is assumed to be based on
his/her/its desires.

This notion of agents controlling proposi-
tions is sometimes an expedient way of com-
puting the truth value of certain propositions.
If an agent is in control of a proposition P,
and s/he desires P, then we can assume that P
is true (modulo limited resources, conflicting
goals, and so on).

The concept of control gives us an abstrac-
tion layer that allows us to skip the details of
the agent planning to make P true, executing
this plan, monitoring it, repairing it, and so
on. For example, a teacher assigns a book
report to a student and, later, needing a copy
of this book, asks the student where it can be
obtained. The teacher didn’t have to worry
about the plan the student made to get the
book or read it, the details of the execution of
this plan, and so on, to believe that (by the
day before the book report was due) the stu-
dent would have somehow obtained a copy
of the book.

Just knowing that you control when you go
home from work and that you want to sleep
at home tonight is enough to have me call
you first at home at midnight if I have to
reach you at this time; that is, I don’t have to
worry about the plan you made to get home,
the details of the execution, and so on, to
believe that (by midnight, at least) you had
made it home.

Agents can participate in events (actually in
instances of SomethingOccurring (see the sec-
tion Processes, Events, and Persistent Objects
and also figure 2) in one of two modes: vol-
untarily or involuntarily. If an agent A partic-
ipates in an event E voluntarily, s/he usually
has a purpose P; P is generally one of his(her)
goals, which, in turn, are the subset of
his(her) desires that s/he has decided to try
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how expressive, also has bad consequences
from a pragmatic standpoint. For example,
one would like to be able to state something
like “When x buys o from y, one of the
subEvents is a paying event, in which x pays
y the price of o.” Given an expressive abstrac-
tion of time, we might have to write a long
axiom to encode this statement—one that
involves numerous uses of subAbsOfActorDur-
ing, subAbsOfActorAfter, and so on—and most
of the details being represented would be
irrelevant in 99 percent of the uses of the
axiom.

Thus, we would like to use much simpler
abstractions if the domain we are dealing
with does not require more expressive abstrac-
tions. Further, the process of formulating
models for domains becomes time consuming
if one is going to try and develop the right
model for each domain.

These considerations led us to introduce
the concepts of microtheories and contexts
(McCarthy 1987b; Guha 1990a) that we men-
tioned earlier. These microtheories are first-
class objects, and a number of operations are
possible on them. For example, given a dis-
course or a problem to be solved, we can
decide to create and enter a new context that
leaves implicit a number of arguments to
predicates, makes assumptions about the
domain, and so on. We can have axioms that
describe which kind of microtheory should be
used for which problems, which form tax-
onomies or other structures of microtheories,
which decide when it is necessary to change
the context of a microtheory (see The Evolu-
tion of the Representation Language for a dis-
cussion on the relationship between a context
and a microtheory), which have defaults that
lift the contents of one microtheory into a
more general one, and so on.

The ontology described in earlier sections is
the most detailed one and is representative of
the net-expressive power of the language. In
addition to the formalism for time and
actions previously mentioned, we have a lat-
tice of simpler abstractions of these available.
Some of these abstractions have only discrete
time or associate time with propositions, and
some even assume that the whole theory they
are dealing with is about a single instant of
the world and, hence, completely ignore
time. A particular domain theory about, say,
Buying (remember that many different theo-
ries can exist for any given domain), can use
the simplest abstraction of time, actions, and
so on, that are adequate for this theory.

The concept of microtheories figures promi-
nently in the approach we are taking for
developing a representation for space. After

many failed attempts at developing a single
general abstraction for space, we decided to
use a number of globally inadequate but
locally adequate theories of space. For exam-
ple, we are working on abstractions of space
that are based on (1) simple diagram-like rep-
resentations, (2) computer-aided design–like
representations that build solids and surfaces
out of a small number of primitives, and (3)
device-level representations that primarily
deal with the topology of a device by using a
number of primitive components and using a
small number of ports for each primitive and
a small number of ways in which two primi-
tives can be connected. Although none of
these abstractions is sufficient as a general
approach to representing space, for any given
problem, one of these (plus a few more that
we are developing) if often adequate. These
various abstractions of space are organized
into a hierarchy because some are just refine-
ments of others.

Contexts and microtheories are not
panaceas for the problems mentioned at the
beginning of this subsection. They bring their
own set of problems with them. For example,
we need to determine when to use which
context, when a context is insufficient, when
we need to enter a new context, and so on.
Although it does not seem hard to come up
with extremely specific heuristics that do
these tasks (for example, for kinematics prob-
lems, if the velocity of the objects is less than
.5c, then use Newtonian mechanics), it would
be preferable to have at least a few general
heuristics for these purposes (Guha 1990a).
This area is one of current focus. Most of the
knowledge base is currently in the theory
MEM. The simpler abstractions of time men-
tioned earlier are available, and a few theories
use these abstractions. A few general heuris-
tics are available for solving some of the prob-
lems (such as deciding when to use which
theory), and more are being developed. We
expect that most of the theories of topics at a
finer granule than those mentioned in this
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cally, a few pure time intervals do exist in the
sense of there being some events whose only
interesting aspects are their temporal extents,
for example, TheYear1990.

By examining many cases of reasoning
about the creation and destruction of objects,
we were led to classify TangibleObject as a
subset of Event. That is, each tangible object is
running a process so to speak—the process of
existing. This ontology lets us easily state
temporal relations between objects, such as
“Fred lived long after Aristotle.” We originally
viewed the Substance versus IndividualObject
distinction to be crucial. We were surprised to
find the two concepts coextensional (each por-
tion of a substance is an individual and vice
versa); similarly, TangibleSubstance is coexten-
sional with TangibleObject; and so on. The
central distinction turns out to be between,
for example, TangibleSubstanceType (whose
instances include, for example, Wood and
Water) and TangibleObjectType (whose
instances include, for example, Table and
Ocean). Using this latter distinction, Cyc can,
for example, predict whether a property will be
extrinsic or intrinsic.

During late 1986 and early 1987, we
thrashed through a series of formulations for
basic property inheritance, including explicit-
ly having frames such as TypicalPerson instead
of (and at one point in addition to) TheSetOf-
AllPeople. We can use TypicalPerson to illus-
trate two troubles with prototypes:

First, one often wants to inherit along slots
other than allInstances. For example, each
entry on Stallone’s fans slot should inherit
entries such as Rocky and Cobra to its
moviesSeen slot. (Of course, our use of terms
such as slot and entries is just shorthand. In
this case, the general nonmonotonic asser-
tion at the epistemological level is fans(Stal-
lone, x) ∧ ¬abn(x) ⊃ moviesSeen(x, Rocky).)

Second, we occasionally need to distin-
guish a predicate (such as interestingness, cre-
atedBy, likedBy) applying to the set of all
people, being inherited to the typical
instance of this set, or even applying (at a
metalevel) to the reified Cyc concept itself.
For example, the typical person is created by
their parents, the frame TypicalPerson was cre-
ated by Lenat, and the set of all people has
no creator (all sets exist in a Platonic universe
and can be neither created nor destroyed).
The typical person is interesting, the concept
TypicalPerson is uninteresting, the set of all
people is reasonably interesting, the concept
Person representing the set of all people is
slightly interesting, and so on. Eventually, we
dispensed with concepts such as TypicalPerson
because any assertion applying to it could

section, which we will add to Cyc, will make
use of this notion of microtheories and that
they will figure prominently in the overall
structure and contents of the knowledge base.

The Evolution of the 
Cyc Ontology

Earlier, we described the 1984–1990 evolution
of the Cyc methodology and the CycL repre-
sentation language. The construction of the
ontology began in late 1984 with an expert
system–like approach. As is apparent from
Lenat, Prakash, and Shepherd (1986), issues
such as the representation of time, substances,
agents, and causality were largely ignored in
favor of highly specific issues. However, our
position has considerably changed in the
interim, and these issues are now regarded as
significant to the ontology.

We have worked out fairly adequate solu-
tions to some of these ontological problems
and are working on solutions for others. We
differ from the rest of the AI community
working on such issues in that we have
refrained from agonizing over the myriad
subtleties of, for example, the different for-
malisms for representing pieces of time;
instead, we have concentrated on using the
formalisms we have for actually encoding
information about various domains. We have
also refrained from tinkering with the logic
for, for example, reasoning about pieces of
time; instead we have worked within the
logic described earlier (see The Evolution of
the Representation Language).

In general, we did not find these solutions
on the first try or even the second. Therefore,
we conclude this subsection with a brief list
of some of the mistakes we made and the
lessons we learned along the way.13

We began by explicitly representing the
time interval over which an event occurred.
Thus, for example, we would have an event
such as TrafficAccident903 and a separate
object TimeIntervalOfTrafficAccident903, and
only the time intervals could participate in
temporal relations such as before and starts-
AfterTheEndOf. However, again and again,
there was never anything more to say about
these time interval frames, that is, beyond a
pointer to the event that they represented the
time interval and beyond the temporal rela-
tions in which they participated. Thus, even-
tually we just merged the two notions—an
event and the time interval of its occur-
rence—and now the domain and range of
temporal relations is Event (the set of all
events) rather than TimeInterval. In theory,
TimeInterval need no longer exist; pragmati-
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just as well be stated as applying to (that is,
inheriting to) allInstances of Person.

Precision is generally a good thing, or (to be
more precise) the ability to be precise is gen-
erally a good thing. However, in most situa-
tions, the most cost-effective behavior is to
choose a level of detail and use the corre-
sponding microtheory instead. A case in
point was our partitioning of the universe
(Thing) into TangibleObject (such as
Rock0093), Intangible (such as the predicate
mass or the set Rock of all rocks), and Com-
positeTangible/IntangibleObject (such as Lenat).
As we discussed in detail in the sections on
composite objects and agents, Cyc frequently
gets the right answer without making this dis-
tinction, even though in rare cases, it is
important (for example, the typical person
has the same answer for how old is their
mind, their body, and the joining of the two,
but we can, as in Frankenstein, separate the
three concepts if we need to). In these subsec-
tions, we explained our solution (that is, our
current way out of this dilemma), which
involves the use of PartiallyTangible and Par-
tiallyIntangible, and we also described our cur-
rent investigations into codifying and using
microtheories.

The Current State of Cyc’s 
Environment and Infrastructure
You might have noticed several aspects of the
Cyc effort that we did not even touch on in
this article. Although interesting in their own
right, these areas are not our main topic for
research, and in each case, we have done only
what we felt necessary to maximize the rate
of Cyc’s construction. Here is a list of a few
such intentional omissions:14 

The Knowledge Server: This subsystem
accepts everyone’s knowledge base opera-
tions; serializes them; and, in case constraint
violations appear, adjudicates the resolution
of the conflict. In cases of no conflict, it then
broadcasts the operations to everyone else.
The connections today are generally thin
wire, although we expect this to change in
the coming year.

The User Interface: We have constructed
various textual and graphic tools for brows-
ing, querying, and editing the knowledge
base. Some of the graphic tools are semantic
net based; one is a sort of Escheresque recur-
sive bird’s-eye view of a museum floor plan.
Some of the editing tools are ideal for making
point mutations and corrections; some are
oriented toward sketching some brand new
(and not yet well codified) area and gradually
making the sketch more precise. User inter-

face issues are tangled with knowledge acqui-
sition (the next two items respectively
describe tools for doing knowledge acquisi-
tion manually and automatically).

The Copy and Edit Mechanism: Most
knowledge entry in Cyc involves finding sim-
ilar knowledge and copying it and modifying
the copy. More and more over the years, Cyc
has helped in this process, and as a result,
knowledge entry can be done more rapidly
than we had originally estimated.

Digitized Images: Yes, often it’s much
easier to just grab a picture of an object and
point to the part you mean rather than try to
figure out what its name is. Cyc contains such
images (from The Visual Dictionary [Corbell
1987]), but experienced knowledge enterers
know their way around the knowledge base
and rarely use them.

Other Nonpropositional Knowledge:
Some Cyc researchers are building neural nets
that we can use at the earliest (preheuristic)
and latest (reduction to instinct) stages of
understanding some task (for example, train-
ing a net on examples of good analogies and
then letting it make hunches about potential-
ly good new analogies, hunches that the 
rest of Cyc can investigate and flesh out sym-
bolically).

The Machine Learning Module: This
module is a symbolic learning subsystem in
addition to the previous statistical, nonpropo-
sitional one. This program roams over the
knowledge base, typically at night, looking
for unexpected symmetries and asymmetries.
These, in turn, often turn out to be bugs, usu-
ally crimes of omission of one sort or another.
In rare cases today and, we expect, more fre-
quently in future years, these turn out to be
genuine little discoveries of useful but hither-
to unentered knowledge.

Present and Future Directions
This article began by explaining the need for
a large, general knowledge base to overcome
the brittleness (in the face of unanticipated
situations) that limits software today. The
need for a Cyc-like knowledge base is critical
not only in expert system–like applications
but also to do semantic processing for natural
language understanding (disambiguation,
anaphora, ellipsis) and to enable realistic
machine learning and analogizing.

We then focused on criteria for an adequate
representation language for this knowledge
base, which drove us to the bifurcated CycL
architecture, having both an expressive epis-
temological level and an efficient heuristic
level. One of the Cyc project’s most interesting
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providing special support for this feature.
Metalevel: Although there are various facil-

ities for stating and using metalevel informa-
tion in Cyc, the metalevel reasoning that
takes place in Cyc today is minimal because it
has not yet been the bottleneck in building
and running Cyc. We believe this situation
might change as Cyc grows even larger, and
the search for arguments grows. Metalevel
reasoning in Cyc needs to be extended both
by adding reasonable metalevel heuristics (for
example, for identifying the small subset of
the knowledge base that is even possibly rele-
vant to answering a given query [Guha and
Levy 1990]) and providing some ability for
the system to improve its performance from
past experience.

Future Plans for the Ontology and the
Knowledge Base

The work being done on the Cyc knowledge
base is largely in the form of the develop-
ment of microtheories for topics at the level
of transportation, human emotions, modern
buildings, and so on. Microtheories are being
developed in two major areas. The first of
these is a set of commonsense theories about
everyday physical phenomena (in the manner
of naive physics), and the second of these is a
set of theories dealing with aspects of agents
(such as agents having and acting on the
basis of emotions, goals, limited resources).

In addition to these areas, a significant
research effort is in progress on the topic of
microtheories themselves, from the perspec-
tive of both formulating axioms for solving
problems (such as when which theory is to be
used) and cataloging the standard kinds of
simplifications that can be made to theories
on developing formalisms, such as for time
and space, that make it easier to state axioms
(that use these formalisms).

Finally, although gross size is often nega-
tively correlated with overall knowledge base
quality and power, we should mention that
Cyc’s knowledge base currently contains over
a million assertions, and we expect almost an
order of magnitude increase in the coming
five years. There are currently 30,000 units, of
which approximately 4,500 are types of pred-
icates, and approximately 5,000 are collections.

Collaborations
How are we to judge where we are going?
How do we make sure that we don’t go
through these 10 years of labor and then find
out in 1995 that we were fundamentally mis-
taken all along? We make sure by getting
others to actually use our system.

accomplishments has been the construction
of the TA translator, which can convert back
and forth between general epistemological-
level (FOPC-like) expressions and particular
heuristic-level template instances. The episte-
mological and heuristic knowledge base levels
and the TA translator are fully implemented
and function as described in this article.

We discussed some of the unexpected
aspects of the Cyc knowledge base’s organiza-
tion and contents, such as the relationships
between IndividualObject, Substance, Process,
and Event. We gave the flavor of some of our
recent research by sketching our (still incom-
plete) treatment of agents and agreements.
Finally, we briefly mentioned the Cyc user
interface tools, knowledge server, and related
issues.

Perhaps the most important theme from all
these aspects of the project is that of eschew-
ing the single general solution dream, instead
assembling a set of partial solutions that work
most of the time and work efficiently in the
most common situations. We have seen this
tenet apply to representation language
design, knowledge entry methodology, con-
trol of search during inferencing, and truth
maintenance as well as throughout the con-
tents of the knowledge base. The emerging
global behavior of the system should hopeful-
ly be fairly use neutral.

In the following two subsections, we dis-
cuss the directions along which we are cur-
rently working to extend both CycL and the
knowledge base. In some sense, the two are
extremely intertwined, in that the extensions
to CycL are largely driven by the needs of the
knowledge base. We then touch on other
future plans and issues: new collaborations;
the proliferation, standardization, and mar-
keting of Cyc; and the expected future scenario
for the demise (or at least transmutation) of
the Cyc project.

Future Plans for the Representation
Language

The main focus of research on extending the
reasoning abilities of the CycL language is
along the following lines:

Default Reasoning: We plan to develop an
ontology of arguments and to formulate and
encode assorted preference criteria that are
useful in default reasoning (to aid in choos-
ing one argument over another).

Microtheories: Although the epistemologi-
cal level does not require any extension to
deal with these explicit contexts, it is likely
that certain standard kinds of microtheories
are likely to benefit from the heuristic level’s
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In the past 18 months, as the Cyc represen-
tation language and ontology stabilized, we
began to encourage collaborations with both
academic researchers and industrial researchers
and developers. We also held workshops and
panel sessions. Finally, we once again (after a
purposeful several-year hiatus to focus solely
on research) began to write books and techni-
cal reports and articles, such as this one, to
inform and interest our colleagues.

Cyc is still too small to have more than an
anecdotal chance of improving the perfor-
mance of the application programs using it,
but the early results are promising. Cyc-based
applications and research efforts are under
way at Bellcore, Digital Equipment Corpora-
tion, NCR, US West, and Apple, and these
efforts do not include the numerous Cyc-
based research projects in academia. In the
following paragraphs, we sketch a few of
these efforts plus a few that are just begin-
ning. Our purpose is to illustrate projects that
are using the richness, scope, or size of the
Cyc knowledge base.

At Digital, John McDermott, David Mar-
ques, Renata Bushko, and others have built a
Cyc-based computer-sizing application. Serv-
ing as a preprocessing step for Xcon (Soloway,
Bachant, and Jensen 1987), its job is to ask
questions about a potential Digital customer
and come up with a rough computer sizing
(mainframes versus workstations, approxi-
mate number and size of file servers, and so
on). The trouble with standard expert systems
doing this task is that they ask too many
questions, questions that can often be
answered by common sense, questions that
Cyc is able to guess answers for. (We don’t
mean that standard expert systems lack infer-
ential abilities, just that they simply don’t
have the required commonsense knowledge
from which to draw the inferences.)

For example, given that toy manufacturers
have stringent government safety regulations
and adult clothing manufacturers don’t,
which is more likely to be the proper match
or precedent for a new potential customer
who is a manufacturer of children’s clothing?

As another example, given that the basic busi-
ness unit in a hotel is the room and at a car
rental agency is the car, use relatively deep
understanding of what goes on at each place
to decide that for a hospital, which is a new
potential customer, the right business unit is
Bed, not Room. These examples illustrate a
reliance on the scope of the Cyc knowledge
base. The next example illustrates a reliance
on the richness and size of one particular part
of the knowledge base, namely, the part deal-
ing with predicates (and, in particular, slots.)

One speculative but fascinating line of
research by Paul Cohen, Micheal Huhns, and
others (Cohen and Loiselle 1988; Huhns and
Stephens 1988) involves automatically guess-
ing whether the composition of two unary
functions (binary predicates, slots) s1 o s2 is
equal to any known relation s3. The guess is
made as follows: They assign +, -, and 0 values
to 10 attributes of each predicate (such as
hierarchical, composable, temporal, near, intrin-
sic). They then create a combination table for
each of these attributes, which says, for exam-
ple, “if s1 has a + value for its hierarchical
attribute, and s2 has a - value, then s3 must
have a + value.” Given a particular s1 and s2,
their values for the 10 attributes produce a set
of 10 constraints on the values of these
attributes for s3, which is used to constrain
the search for s3’s identity.

To the extent that this line of research suc-
ceeds, it teases apart the underlying deep
structure of what it means to be a predicate.
However, when or if the scheme fails, such
failures should lead to the refining of the
combination tables and assignments or,
rarely, to the defining of a new primitive
attribute for predicates. In any case, the point
is that the research required a platform like
Cyc: (1) The size of Cyc’s slot space (4000+
known types of slots and other predicates)
increases the chance that the resultant 10
vector matches some existing predicate. (2)
The richness of slot space (categories and
other interslot relationships) helps in the fol-
lowing way: For each particular slot si, most
of the 10 primitive attributes’ values for si can
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powerful—and might be—but have not been
tested on many examples. Having a knowl-
edge base with a wide scope (not just size) on
which to test these theories would be useful.
One example is the work of Devika Subrama-
nian, now at Cornell University, who is test-
ing her reformulation ideas in Cyc.

Other ongoing research collaborations
include coupling with large engineering
knowledge bases (with Ed Feigenbaum and
Tom Gruber at Stanford University) and large
databases (with Stuart Russell and Mike
Stonebraker at University of California at
Berkeley), standardizing knowledge inter-
change formats (with Mike Genesereth at
Stanford), axiomatizing human emotions
(with John McCarthy at Stanford), develop-
ing machine learning (with Wei-Min Shen
and Mark Derthick at MCC), and using quali-
tative physics and analogy in children’s sto-
ries (with Ken Forbus). We are also engaged in

be inherited or otherwise inferred rather than
have to go through (in our current case)
40,000+ separate episodes of pondering and
entering a +, -, or 0 entry.

One vital collaboration is that with Elaine
Rich and Jim Barnett at MCC, namely, the
natural language understanding project
described in Barnett et al. (1990). Here, the
Cyc knowledge base is stressed to its limits to
disambiguate word senses, resolve anaphoric
and omitted references, interpret the mean-
ing of ellipses, and so on. Only so much can
be done with syntactic analysis and discourse
rules; the rest must be handed to Cyc, which
creates various alternate hypothetical worlds
and decides how (im)plausible each one is,
for example, by seeing how metonymical the
speaker would have to be in each possible
world for no real-world constraints to be 
violated.

A number of theories in AI seem rather
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We tell Cyc that Sam is a land animal and ask for types of body parts that Sam probably has:
(assert ‘(#%allInstanceOf #%Sam #%LandAnimal))
(ask ‘(#%hasPartTypes #%Sam x)) .

The question is addressed to the epistemological level. The tell-ask interface translates this question into an
appropriate heuristic-level query. The heuristic level already contains an inheritance axiom that says the land
animals have legs. The inheritance procedure runs and yields a simple argument that Sam has legs. Because
there is no reason for invalidating this argument and because there isn’t any argument for Sam not having
legs, the Argument Comparison module asserts into the heuristic-level knowledge base that Sam has legs. In
turn, this assertion produces a binding list for the free variable x in the formula that we Asked, above;
namely,

((x . Legs)) .
Repeated calls to Ask can be made and will result in additional bindings for x. We now tell the systems that as
a default, Reptiles don’t have legs. The tell-ask interface translates this assertion into an inheritance axiom:

(assert ‘(#%LogImplication (#%LogAnd (#%allInstanceOf x #%Reptile) (#%LogNot (#%abnormal x “reptile-with-leg")))
(#%LogNot (#%hasPartTypes x #%Legs)))) .

We now tell Cyc that Sam is a snake, and (in case it didn’t know already) that snakes are reptiles, and again
ask the system if Sam has legs.

(assert ‘(#%allGenls #%Snake #%Reptile))
(assert ‘(#%allInstanceOf #%Sam #%Snake))
(ask ‘(#%hasPartTypes #%Sam #%Legs)) .

Even though the system previously asserted that Sam had legs, the addition of the inheritance caused this
conclusion to be marked as potentially stale. Thus, when we ask this query, the argument generator tries to
search for an argument for the negation of the query and, sure enough, finds one. Now we have an argument
for Sam having legs based on his being a land animal and an argument for Sam not having legs based on his
being a reptile. The argument comparator chooses the more specific one and concludes (and asserts into the
heuristic-level knowledge base) that Sam does not have legs.

Figure 3. An Example of Interaction between the User, the Epistemological Level, the Tell-Ask Interface, and the Heuristic Level. 
The example is intentionally very simple and is meant to be clear rather than typical of the sophisticated inferencing that Cyc performs.



informal collaborations with Marvin Minsky,
Pat Hayes, and others.

Conclusion
What do we hope to get from our efforts?
Where do we hope to be by the end of the
1990s? Here are three possible levels of suc-
cess, in increasing order of optimism:

Good: Although not directly built on and
widely used, the Cyc research might still pro-
vide some insights into issues involved in
building large commonsense knowledge
bases. Perhaps, it would give us an indication
about whether the symbolic paradigm is
flawed and, if so, how. It might also yield a
rich repertoire of “how to represent it” heuris-
tics and might at least motivate research
issues in building future AI systems.

Better: Cyc forms the core of a knowledge
base that can be used by the next generation
of AI research programs to help make them
more than theoretical exercises. No one doing
research in symbolic AI in the early twenty-
first century would want to be without a copy
of Cyc, any more than today’s researchers
would want to be without Eval.

Best: Cyc’s knowledge base serves as the
foundation for the first true AI agent. It is
something on which full-fledged natural lan-
guage understanding systems, expert systems,
and machine learning systems can be built.
No one in 2015 would dream of buying a
machine without common sense, any more
than anyone today would buy a personal
computer that couldn’t run spreadsheets,
word processing programs, communications
software, and so on.

Numerous projects are under way in Japan
and Great Britain and in this country at
Carnegie-Mellon University, USC/Information
Sciences Institute, Stanford, and elsewhere
that appear similar to Cyc in some ways, but
each of them has traded breadth and scope
for an increased chance of success at this nar-
rowed goal (for example, several of these pro-
jects have some form of limited machine
translation as their goal).

Do we have a good chance of achieving our
better goal? Because of our clipping of repre-
sentation thorns and stabilizing of the repre-
sentation language, inference engine suite,
and high-level ontology, we believe the
answer is “Yes.” At the least, we now expect
that the body of knowledge we accumulate in
this decade will continue to exist, be used,
and be extended for decades to come, with
much of this accretion being done semiauto-
matically.

We now come to the final area we address

in this article: the Cyc project’s expected life
expectancy and mode of demise. We expect
to increasingly rely on knowledge-based natu-
ral language understanding (KBNL) as the
means of clarifying apparent contradictions
and gaps in the knowledge base, and we
expect to rely increasingly on knowledge-
based machine learning (KBML) as the means
of identifying these unexpected regularities
and irregularities in the knowledge base. Both
KBNL and KBML can gradually become more
and more important ways of entering new
knowledge into the knowledge base. These
projects have already begun, but it’s too early
to look for signs of the ramp up. This particu-
lar corner is one we expect to turn in the
middle part of this decade, with KBNL becom-
ing the dominant mode of knowledge acqui-
sition for Cyc and KBML becoming the
dominant mode of policing the growing
knowledge base. The role of human knowl-
edge enterers today, manually entering asser-
tion after assertion, is akin to teachers who
must instruct by surgically manipulating
brains. Turning the corner would mean that
the role of humans would become much
more like tutors, with a great deal of question
answering going on in both directions. Much
of the work in this coming decade will be
driven by use as humans and application pro-
grams exercise Cyc and rely on it more and
more as a substrate for intelligent behavior.
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Notes
1. A shortened version of portions of this paper
appeared in Communications of the ACM, Vol. 33,
No. 8, Copyright 1990, Association for Computing
Machinery, Inc. By permission.

2. All the material presented on the language and
the ontology has been implemented and is in use
in the Cyc system unless otherwise mentioned. In a
number of places in this article, we have omitted
the axioms and other details. They have been
worked out and in most cases are available in one
of the references or can be obtained from the
authors.

3. Because it includes facilities to form the set of
objects x satisfying a given property P(x), our lan-
guage is closer to Zermelo-Frankel (ZF) than to first-
order predicate calculus (FOPC).

4. The isa predicate corresponds to the set-member-
ship relation; it is sometimes called ISA, is-a, AKO,
element-of, and so on. In Cyc’s knowledge base, we
happen to call it instanceOf. Also, the abi predicates
are short for abnormal in fashion i; so abi corre-
sponds to being an exception in the sense of being
a bird and not being able to fly. One Cyc axiom
says that birds with broken wings are abnormal in
sense abi .

5. ist(x,y) means x is true in theory y. Moreover,
although supported, falls, and so on, are fluent
valued functions, in this article, we often refer to
them as predicates; the intended meaning should
always be clear from the context.

6. Although in most cases, we use the term ontolo-
gy in the sense of the objects that can be quantified
over, we occasionally use it in a looser sense of the
organization and structure of the knowledge base
or even the predicates and objects in the epistemo-
logical-level language.

7. The same predicate can appear with different ari-
ties and argument types in different microtheories.

8. We used to, but they were never much use. Col-
lections of collections, however, such as PersonType,
SubstanceType, and EventType, have proven vital
They are analogous to object-oriented systems’
metaclasses.

9. The subabstraction formalism is superficially sim-
ilar to the histories framework (Hayes 1985). How-
ever, there is no relation between the intersection
of these histories and the frame problem (McCarthy
and Hayes 1987).

10. The interval-based abstraction was developed
independently of Allen (1986).

11. There are, of course, exceptions. For example,

FredIn (1972) might like EthelIn (1958) more than
EthelIn (1972).

12. This use of the term agent is unrelated to the
linguists’ usage, as in “‘Kettle’ is the agent in ‘The
kettle whistled’.”

13. Rather than go through a lengthy presentation
of some of the ways in which the Cyc ontology has
changed over time, we refer the reader to the previ-
ous section, The Current State of Cyc’s Ontology,
wherein the nature and salient aspects of our fairly
adequate solutions should become apparent.

14. Unless otherwise noted,
each of them is fully imple-
mented and in routine daily
use.
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