
This research was motivated by the
widely held belief that constructing
an automatic program synthesis
system that can accept a high-level
description of a problem for an arbi-
trary domain and generate code for
the problem completely automatical-
ly is pragmatically impossible. How-
ever, by focusing on a well-defined
domain, it is possible to incorporate
sufficient knowledge within a system
so that it can communicate with an
end user at the level of his(her) appli-
cation and automatically generate a
program from a problem specifica-
tion. Such knowledge-based systems
often employ a catalog of transfor-
mational rules that progressively
refine an abstract specification into a
concrete implementation. A major
research issue in such systems is how
to increase the efficiency of the sys-
tems by controlling the application
of rules and avoiding repetitive
traversal of the search space.

In my Ph.D. dissertation (Bhansali
1991), I develop an integrated knowl-
edge-based framework for efficiently
synthesizing programs by bringing
together ideas from the fields of soft-
ware engineering (software reuse,
domain modeling) and AI (hierarchi-
cal planning, analogical reasoning).
Based on this framework, I construct-
ed a prototype system, APU, that can
synthesize UNIX shell scripts from a
high-level specification of problems
typically encountered by novice shell
programmers. An empirical evalua-
tion of the system’s performance
points to certain criteria that deter-
mine the feasibility of the derivational
analogy approach in the automatic
programming domain when the cost
of detecting analogies and recovering
from wrong analogs is considered
(Bhansali 1991; Bhansali and Harandi
1991; Harandi and Bhansali 1989).

System Overview
Chapter 2 of the dissertation gives
an overview of the framework and

describes its two major components
—the knowledge base and the pro-
gram generator. The knowledge base
consists of three subcomponents: a
concept dictionary, a library of reusable
components, and a layered rule base.

The concept dictionary contains a
description of the domain-dependent
vocabulary (objects, functions, and
predicates) needed for describing
problems at a high level. Using this
vocabulary, a user can communicate
with the system at the level of his
(her) application. The concepts are
organized in an abstraction hierarchy
with inheritance of properties from
higher levels to lower ones. Besides
providing an economic representa-
tion, this hierarchy also forms the
basis for the system to recognize
analogies among problems.

The library of reusable software com-

ponents is used by the program gener-
ator to avoid the repetitive synthesis
of programs or program fragments
that are used frequently. Two types of
software components—subroutines
and templates—are static components
of the library. A third component—
derivation history—is acquired dynami-
cally by the system as it solves prob-
lems specified by the user. A derivation
history is a trace of how a program is
derived from a specification and is
used to speed the synthesis of analo-
gous programs.

The layered rule base contains a cata-
log of strategy rules, problem-solving
rules, and domain-specific rules that
can be employed to transform a
problem specification into a shell

script. The layered structure of the
rule base should allow the system to
be configured to different domains
and target languages with minimal
changes.

The program generator consists of
two subcomponents: a planner and
an analogical reasoner.

The planner, based on the concept
of hierarchical planning, uses the
layered structure of the rule base and
certain heuristics to ensure that plan
failures are detected early and that
efficient plans are chosen over ineffi-
cient ones. The planner uses a top-
down decomposition approach to
first generate a plan to solve the
problem (in which the various UNIX

commands and subroutines form the
primitive operators) and then uses a
set of simple transformations to con-
vert the plan into a shell program.

The analogical reasoner, based on
the derivational analogy paradigm of
Carbonell (1983), complements the
role of the planner. The analogical
reasoner can automatically retrieve
problems from the derivation history
library that are analogous to the cur-
rent problem; replay the derivation
history to synthesize programs more
efficiently than the planner; and,
finally, store the derivation traces of
solved problems in the library to be
used in a future context.

Chapter 3 describes the planner-
based program synthesis algorithm of
APU. The algorithm is illustrated
through an example, showing the
various kinds of general and domain-
specific knowledge needed.

Analogical Reasoner
Although the idea of an integrated
framework is advocated in the thesis
and implemented in the prototype
system, I have been most concerned
with demonstrating the effectiveness
of the analogical reasoning capability
of the system. The three crucial pro-
cesses in an analogical reasoning
system that replays previous deriva-
tions are (1) retrieving an appropriate
analog from a case library of deriva-
tion histories, (2) adapting the
derivation to fulfill the requirements
of the new problem, and (3) consoli-
dating the result back in the case
library. In my dissertation, I describe
and implement the first two process-
es of retrieval and adaptation and
provide suggestions on how the
result might be consolidated into a
case library.

FALL 1991 31

Dissertation Abstract

Domain-Based Program
Synthesis Using Planning
and Derivational Analogy

Sanjay Bhansali

… an integrated knowl-
edge-based framework for
efficiently synthesizing
programs…

AI Magazine Volume 12 Number 3 (1991) (© AAAI)

Chapter 4 describes the methodol-
ogy for recognizing and retrieving
analogs. The recognition algorithm is
based on a set of four heuristics that
consider various abstract features of
problems in order to detect analogies.
The features considered are designed
to estimate the top-level solution
strategies, as well as the sequence of
individual problem-solving steps, by
analyzing the outermost constructs
of problem specifications, the rela-
tionship between input and output
arguments in terms of the system-
aticity principle of Gentner (1983),
various syntactic cues in the problem
specification, and the degree of simi-
larity between corresponding objects
in a target problem and a candidate
analog. The organization of concepts
in the concept dictionary is crucial to
effecting the operation of the heuris-
tics in determining the best analog
for a target problem. The heuristics
themselves are dependent, to a large
extent, on the representation of the
problems as well as the domain, but
the basic principles on which they
are based seem to be applicable to
several domains and representations.

Chapter 5 describes the replay
algorithm and illustrates it through
an example. Several theoretical issues
pertinent to replay systems have been
detailed by Mostow (1989). I discuss
some of the relevant issues in the con-
text of APU, comparing my approach
to some of the other works in the field.

Empirical Evaluation
Chapter 6 contains a detailed account
of experiments conducted to perform
an empirical evaluation of the system’s
performance. The experiments were
designed to assess APU’s performance
by determining the answers to the
following questions: Is it feasible to
detect analogous problems using
domain knowledge? Does the cost of
detecting analogies and recovering
from an inappropriate analog out-
weigh the benefits of adapting an
existing program (as opposed to syn-
thesizing a program outright)? How
is the performance of the system
affected by the size of the derivation
history library?

The data set for the experiment
was collected by randomly selecting
problems from a subdomain of UNIX

using fixed procedures. APU’s perfor-
mance was measured by using it to
synthesize shell scripts for the prob-
lems with various combinations of

the retrieval heuristics and without
analogy. The results of the experi-
ment show that when using all 4
retrieval heuristics, APU’s retrieval
capability is almost as good as a
human’s (APU missed the best analog
in only 2 out of 45 cases). The time
to synthesize programs using analogy
was found, on an average, to be about
half the time it takes to synthesize
programs without analogy. Note that
this performance is the average case;
in some cases, the use of analogy
actually degraded the system’s perfor-
mance. A promising observation was
that when APU found an analog, the
reduction in time was much greater
than the increase in time when APU

found no appropriate analog. Finally,
the time taken to search for analogs
depended roughly on the number of
features used to index problems to
the number of problems in the library,
which suggests when it would be
appropriate to store problems in the
derivation history library.

In chapter 7, I discuss some of the
other replay-reuse systems: POPART

(Wile 1983), BOGART (Mostow, Barley,
and Weinrich 1989), XANA (Mostow
and Fisher 1989), KIDS (Goldberg 1990),
DMS (Baxter 1990), PRIAR (Kamham-
pati 1989), PRODIGY (Carbonell and
Veloso 1988), and others. Among
these, POPART, XANA, KIDS, and DMS are
automatic programming systems.
However, the emphasis in all of them
is on design iteration rather than
analogical mapping; hence, the issue
of analogical retrieval is side-stepped.

Conclusions
The belief that reuse is the central
mechanism that will foster large-scale
improvement in software-engineer-
ing productivity is widespread. This
thesis represents a continuation of
the efforts of several researchers
engaged in making reuse a practical
reality. The thesis adopts a wide-spec-
trum view of reuse, in which domain-

knowledge, common programming
and problem-solving expertise (in the
form of subroutine libraries, code
skeletons, and heuristic rules), and
dynamically acquired problem-solving
experience are used in an integrated
manner to increase the efficiency of
program synthesis. The dissertation
focuses on establishing the feasibility
and importance of using past experi-
ence in the form of derivation histories.

Acknowledgments
This work benefited greatly from the
guidance of Mehdi T. Harandi and
Uday Reddy and the suggestions and
criticisms of Jack Mostow, Gregg
Collins, and the members of the
Knowledge Based Programming
Assistant (KBPA) Group at the Uni-
versity of Illinois at Urbana.

References
Baxter, I. 1990. Transformational Mainte-
nance by Reuse of Design Histories, Tech-
nical Report, 90-36, Dept. of Information
and Computer Science, Univ. of Califor-
nia at Irvine.

Bhansali, S. 1991. Domain-Based Program
Synthesis Using Planning and Derivation-
al Analogy, Technical Report, UIUCDCS-
R-91-1701, Dept. of Computer Science,
Univ. of Illinois at Urbana-Champaign.
(Available from Erna Amerman, Depart-
ment of Computer Science, 1304 West
Springfield Avenue, Urbana, IL 61801.)

Bhansali, S., and Harandi, M. 1991. Synthe-
sizing UNIX Shell Scripts Using Derivation-
al Analogy. In Proceedings of the Tenth
National Conference on Artificial Intelli-
gence, 521-526. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Carbonell, J. 1983. Derivational Analogy
and Its Role in Problem Solving. In Pro-
ceedings of the Third National Confer-
ence on Artificial Intelligence, 64–69.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Carbonell, J., and Veloso, M. 1988. Inte-
grated Derivational Analogy into a General
Problem-Solving Architecture. In Proceed-
ings of the DARPA Workshop on Case-
Based Reasoning, 104–124. San Mateo,
Calif.: Morgan Kaufmann.

Gentner, D. 1983. Structure-Mapping: A
Theoretical Framework for Analogy. Cog-
nitive Science 7(2): 155–170.

Goldberg, A. 1990. Reusing Software
Developments, Technical Report KES.U.90.2,
Kestrel Institute, Palo Alto, California.

Harandi, M., and Bhansali, S. 1989. Program
Derivation Using Analogy. In Proceedings
of the Eleventh International Joint Con-
ference on Artificial Intelligence, 389–394.
Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

32 AI MAGAZINE

Dissertation Abstract

The time to synthesize
programs using analogy
was… about half the
time it takes to synthesize
programs without analogy.

Kambhampati, S. 1989. Flexible Reuse and
Modification in Hierarchical Planning: A
Validation Structure Based Approach,
Technical Report, CS-TR-2334, Dept. of
Computer Science, Univ. of Maryland.

Mostow, J. 1989. Design by Derivational
Analogy: Issues in the Automated Replay
of Design Plans. Artificial Intelligence
40:119–184.

Mostow, J., and Fisher, G. 1989. Replaying
Transformationals of Heuristic Search
Algorithms in Diogenes. In Proceedings of
the DARPA Workshop on Case-Based Rea-
soning, 94–99. San Mateo, Calif.: Morgan
Kaufmann.

Mostow, J.; Barley, M.; and Weinrich, T.
1989. Automated Reuse of Design Plans.
International Journal for Artificial Intelligence
and Engineering 4(4): 181–196.

Wile, D. 1983. Program Developments:
Formal Explanations of Implementations.
Communications of the ACM 26(11): 902–911.

Sanjay Bhansali is a research associate at
the Knowledge Systems Laboratory, Stan-
ford University. He obtained his Ph.D. at
the University of Illinois at Urbana-
Champaign. His research interests include
knowledge-based software engineering,
knowledge acquisition, redesign, analogi-
cal reasoning, and machine learning.

FALL 1991 33

Dissertation Abstract

AI News (continued from page 21)

Software Library: Sample agreements for
depositors and users of the library
were distributed and are under review.
In addition, Ken Forbus is investigat-
ing how similar organizations handle
these requests.

USSR AI Society: President-Elect Pat
Hayes reported a request from the
USSR AI Society for AAAI support.
After some discussion, it was moved
that the AAAI would allocate $10,000
for travel to the AAAI National Confer-
ence for members of new AI societies
in countries with no hard currency.
Up to $5,000 will be disbursed to the
USSR AI Society.

Media Committee: Executive Director
Claudia Mazzetti is currently forming
a Media Committee to look at a long-
range plan for the Association.

National Medal of Science: A motion
was passed unanimously to support
the nomination of Allen Newell for
the National Medal of Science.

Before adjournment, President
Daniel Bobrow introduced the new
members of the Council: Jaime Car-
bonell, Paul Cohen, Elaine Kant, and
Candy Sidner. ■

