
Anne v.d.L. Gardner
Department of Computer Science

Stanford University
Stanford, California 94305

This article is the second planned excerpt from the
Handbook of Artificial Intelligence being compiled at Stan-

ford University. This overview of the Handbook chapter on
search, like the overview of natural language research we
printed in the first issue, introduces the important ideas and
techniques, which are discussed in detail later in the chapter.
Cross-references to other articles in the Handbook have been
removed -- terms discussed in more detail elsewhere are
italicized. The author would like to note that this article draws
on material generously made available by Nils Nilsson for use
in the Handbook.

In Artificial Intelligence, the terms problem solving and
search refer to a large body of core ideas that deal with
deduction, inference, planning, commonsense reasoning,
theorem proving, and related processes. Applications of
these general ideas are found in programs for natural
language understanding, information retrieval, automatic
programming, robotics, scene analysis, game playing,
expert systems, and mathematical theorem proving. In
this chapter of the Handbook we examine search as a tool
for problem solving in a more limited area. Most of the
examples considered are problems that are relatively easy
to formalize. Some typical problems are:

1. finding the solution to a puzzle,

2. finding a proof for a theorem in logic or
mathematics,

2 Al MAGAZINE Winter 1980-81

finding the shortest path connecting a set of
nonequidistant points (the traveling-salesman
problem),

linding a sequence of moves that will win a
game, or the best move to make at a given
point in a game,

finding a sequence of transformations that will
solve a symbolic integration problem.

This overview takes a general look at search in problem
solving, indicating some connections with topics
considered in other Handbook chapters. The remainder of
the Search chapter is divided into three sections. The first
describes the problem representations that form the basis
of search techniques: state-space representations,
problem-reduction representations, and game trees. The
second section considers algorithms that use these
representations. Blind search algorithms, which treat the
search space syntactically, are contrasted with heuristic
methods, which use information about the nature and
structure of the problem domain to limit the search.
Finally, the chapter reviews several well-known early
programs based on search, together with some related
planning programs.

Components of Search Systems
Problem-solving systems can usually be described in

AI Magazine Volume 2 Number 1 (1981) (© AAAI)

terms of three main components. The first of these is a
database, which describes both the current task-domain
situation and the goal. The database can consist of a
variety of different kinds of data structures including
arrays, lists, sets of predicate calculus expressions, property
list structures, and semantic networks. In a domain for
automated theorem proving, for example, the current
task-domain situation consists of assertions representing
axioms, lemmas, and theorems already proved; the goal is
an assertion representing the theorem to be proved. In
information-retrieval applications, the current situation
consists of a set of facts, and the goal is the query to be
answered. In robot problem-solving, a current situation is
a world mode/ consisting of statements describing the
physical surroundings of the robot, and the goal is a
description that is to be made true by a sequence of robot
actions.

The second component of problem-solving systems is a
set of operators that are used to manipulate the database.
Some examples of operators include:

1. in theorem proving, rules of inference such as
modus ponens and resolution;

2. in chess, rules for moving chessmen;

3. in symbolic integration, rules for simplifying
the forms to be integrated, such as integration
by parts or trigonometric substitution.

Sometimes the set of operators consists of only a few
general rules of inference that generate new assertions
from existing ones. Usually it is more efficient to use a
large number of very specialized operators that generate
new assertions only from very specific existing ones.

The third component of a problem-solving system is a
control strategy for deciding what to do next--in particular,
what operator to apply and where to apply it. Sometimes
control is highly centralized, in a separate control
executive that decides how problem-solving resources
should be expended. Sometimes control is diffusely
spread among the operators themselves.

The choice of a control strategy affects the contents and
organization of the database. In general, the object is to
achieve the goal by applying an appropriate sequence of
operators to an initial task-domain situation. Each
application of an operator modifies the situation in some
way. If several different operator sequences are worth
considering, the representation often maintains data
structures showing the effects on the task situation of each
alternative sequence. Such a representation permits a
control strategy that investigates various operator
sequences in parallel or that alternates attention among a
number of sequences that look relatively promising.
Algorithms of this sort assume a database containing
descriptions of multiple task-domain situations or states. It

may be, however, that the description of a task-domain
situation is too large for multiple versions to be stored
explicitly; in this case, a backtracking control strategy may
be used. A third approach is possible in some types of
problems such as theorem proving, where the application
of operators can add new assertions to the description of
the task-domain situation but never can require the
deletion of existing assertions. In this case, the database
can describe a single, incrementally changing task-domain
situation; multiple or alternative descriptions are
unnecessary.

Reasoning Forward and Reasoning
Backward
The application of operators to those structures in the

database that describe the task-domain situation--to
produce a modified situation--is often called reasoning
&ward. The object is to bring the situation, or problem
state, forward from its initial configuration to one
satisfying a goal condition. For example, an initial
situation might be the placement of chessmen on the
board at the beginning of the game; the desired goal, any
board configuration that is a checkmate; and the operators,
rules for the legal moves in chess.

An alternative strategy, reasoning backward, involves
another type of operator, which is applied, not to a current
task-domain situation, but to the goal. The goal
statement, or problem statement, is converted to one or
more subgoals that are (one hopes) easier to solve and
whose solutions are suffllcient to solve the original
problem. These subgoals may in turn be reduced to
sub-subgoals, and so on, until each of them is accepted to
be a trivial problem or its subproblems have been solved.
For example, given an initial goal of integrating ll(cos2x)
dx, and an operator permitting l/(cos x> to be rewritten as
set x, one can work backward toward a restatement of the
goal in a form whose solution is immediate: The integral
of sec2x is tan x.

The former approach is said to use forward reasoning and
to be data-driven or bottom-up. The latter uses backward
reasoning and is goal-directed or top-down. The distinction
between forward and backward reasoning assumes that the
current task-domain situation or state is distinct from the
goal. If one chooses to say that a current state is the state
of having a particular goal, the distinction naturally
vanishes.

Much human problem-solving behavior is observed to
involve reasoning backward, and many artificial
intelligence programs are based on this- general strategy.
In addition, combinations of forward and backward
reasoning are possible. One important AI technique
involving forward and backward reasoning is called
means-ends analysis; it involves comparing the current goal

Al MAGAZINE Winter 1980-81 3

with a current task-domain situation to extract a d/~ffrence
between them. This difference is then used to index the
(forward) operator most relevant to reducing the
difference. If this especially relevant operator cannot be
immediately applied to the present problem state, subgoals
are set up to change the problem state so that the relevant
operator can be applied. After these subgoals are solved,
the relevant operator is applied and the resulting, modified
situation becomes a new starting point from which to solve
for the original goal.

State Spaces and Problem Reduction
A problem-solving system that uses forward reasoning

and whose operators each work by producing a single new
object--a new state--in the database is said to represent
problems in a state-space representation.

For backward reasoning, a distinction may be drawn
between two cases. In one, each application of an operator
to a problem yields exactly one new problem, whose size
or difficulty is typically slightly less than that of the
previous problem. Systems of this kind are also referred
to, in this chapter, as employing state-space
representations. Two instances of such representations,
described in other articles, are the Logic Theorist program
(Newell, Shaw, and Simon, 1963) and the
backward-reasoning part of bidirectional search (Pohl,
1971).

A more complex kind of backward reasoning occurs if
applying an operator may divide the problem into a set of
subproblems, perhaps each significantly smaller than the
original. An example would be an operator changing the
problem of integrating 2/(x* - I> dx into the three
subproblems of integrating l/(x - 1) dx, integrating -l/(x
+ 1) dx, and adding the results. A system using this kind
of backward reasoning, distinguished by the fact that its
operators can change a single object into a conjunction of
objects, will be said to employ a problem-reduction
representation.

There may or may not be constraints on the order in
which the subproblems generated by a problem-reduction
system can be solved. Suppose, for example, that the
original problem is to integrate cf(x) + g(x) dx). Applying
the obvious operator changes it to the new problem
consisting of two integrations, f(x dx) and g(x dx).
Depending on the representation, the new problem can be
viewed as made up of either (a> two integration
subproblems that can be solved in any order or (b) two
integration subproblems plus the third subproblem of
summing the integrals. In the latter case, the third task
cannot be done until the first two have been completed.

Besides the state-space and problem-reduction
approaches, other variations on problem representation are

possible. One is used in game-playing problems, which
differ from most other problems by virtue of the presence
of adversary moves. A game-playing problem must be
represented in a way that takes into account the
opponent’s possible moves as well as the player’s own.
The usual representation is a game tree, which shares many
features of a problem-reduction representation. Detailed
examples of game-tree representations, as well as of
state-space and problem-reduction representations, are
given later in the chapter. Examples may also be found in
Nilsson’s texts.

Another variation is relevant to theorem-proving
systems, many of which use forward reasoning and
operators (rules of inference) that act on conjunctions of
objects in the database. Although the representations
discussed here assume that each operator takes only a
single object as input, it is possible to define a
theorem-proving representation that provides for
multiple-input, single-output operators (see Kowalski,
1972).

Graph Representation
In either a state-space or a problem-reduction

representation, achieving the desired goal can be equated
with finding an appropriate finite sequence of applications
of available operators. While what one is primarily
interested in--the goal situation or the sequence that leads
to it--may depend on the problem, the term search can
always be understood, without misleading consequences,
as referring to the search for an appropriate operator
sequence.

Tree structures are commonly used in implementing
control strategies for the search. In a state-space
representation, a tree may be used to represent the set of
problem states produced by operator applications. In such
a representation, the root node of the tree represents the
initial problem situation or state. Each of the new states
that can be produced from this initial state by the
application of just one operator is represented by a
successor node of the root node. Subsequent operator
applications produce successors of these nodes, and so on.
Each operator application is represented by a directed arc
of the tree. In general, the states are represented by a
graph rather than by a tree, since there may be different
paths from the root to any given node. Trees are an
important special case, however, and it is usually easier to
explain their use than that of graphs.

Besides these ordinary trees and graphs, which are used
for state-space representations, there are also specialized
ones called AND/OR graphs that are used with
problem-solving methods involving problem reduction.
For problems in which the goal can be reduced to sets of
subgoals, AND/OR graphs provide a means for keeping
track of which subgoals have been attempted and which

4 Al MAGAZINE Winter 1980-81

combinations of subgoals are sufficient to achieve the
original goal.

combinatorial explosion.

The Search Space
The problem of producing a state that satisfies a goal

condition can now be formulated as the problem of
searching a graph to find a node whose associated state
description satisfies the goal, Similarly, search based on a
problem-reduction representation can be formulated as the
search of an AND/OR graph.

It should be noted that there is a distinction between the
graph to be searched and the tree or graph that is
constructed as the search proceeds. In the latter, nodes
and arcs can be represented by explicit data structures; the
only nodes included are those for which paths from the
initial state have actually been discovered. This explicit
graph, which grows as the search proceeds, will be referred
to as a search graph or search tree.

In contrast, the graph to be searched is ordinarily not
explicit. It may be thought of as having one node for
every state to which there is a path from the root. It may
even be thought of, less commonly, as having one node
for every state that can be described, whether or not a
path to it exists. The implicit graph will be called the state
space or, if generalized to cover non-state-space
representations such as AND/OR graphs or game trees,
the search space. Clearly, many problem domains (such as
theorem proving) have an infinite search space, and the
search space in others, though finite, is unimaginably
large. Estimates of search-space size may be based on the
total number of nodes (however defined) or on other
measures. In chess, for example, the number of different
complete plays of the average-length game has been
estimated at lO’*O (Shannon, 1950, 1956), although the
number of “good” games is much smaller (see Good,
1968). Even for checkers, the size of the search space has
been estimated at 104c (Samuel, 1963).

Searching now becomes a problem of making just
enough of the search space explicit in a search graph to
contain a solution of the original goal. If the search space
is a general graph, the search graph may be a subgraph, a
subgraph that is also a tree, or a tree obtained by
representing distinct paths to one search space node with
duplicate search graph nodes.

Limiting Search
The critical problem of search is the amount of time and

space necessary to find a solution. As the chess and
checkers estimates suggest, exhaustive search is rarely
feasible for nontrivial problems. Examining all sequences
of n moves, for example, would require operating in a
search space in which the number of nodes grows
exponentially with n. Such a phenomenon is called a

There are several complementary approaches to reducing
the number of nodes that a search must examine. One
important way is to recast the problem so that the size of
the search space is reduced. A dramatic, if well-known,
example is the mutilated chessboard problem:

Suppose two diagonally opposite corner squares are removed
from a standard 8 by 8 square chessboard Can 31 rectangular
dominoes, each the size of exactly two squares, be so placed as
to cover precisely the remaining board? (Raphael, 1976, p 31)

If states are defined to be configurations of dominoes on
the mutilated board, and an operator has the effect of
placing a domino, the search space for this problem is very
large. If, however, one observes that every domino placed
must cover both a red square and a black one and that the
squares removed are both of one color, the answer is
immediate. Unfortunately, little theory exists about how
to find good problem representations. Some of the sorts
of things such a theory would need to take into account
are explored by Amarel (19681, who gives a sequence of
six representations for a single problem, each reducing the
search space size by redefining the states and operators.

A second aspect concerns search efficiency within a
given search space. Several graph- and tree-searching
methods have been developed, and these play an
important role in the control of problem-solving processes.
Of special interest are those graph-searching methods that
use heuristic knowledge from the problem domain to help
focus the search. In some types of problems, these
heuristic search techniques can prevent a combinatorial
explosion of possible solutions. Heuristic search is one of
the key contributions of AI to efficient problem solving.
Various theorems have been proved about the properties
of search techniques, both those that do and those that do
not use heuristic information. Briefly, it has been shown
that certain types of search methods are guaranteed to find
optimal solutions (when such exist). Some of these
methods, under certain comparisons, have also been
shown to find solutions with minimal search effort.
Graph- and tree-searching algorithms, with and without
the use of heuristic information, are discussed at length
later in the chapter.

A third approach addresses the question: Given one
representation of a search problem, can a problem-solving
system be programmed to find a better representation
automatically? The question differs from that of the first
approach to limiting search in that here it is the program,
not the program designer, that is asked to find the
improved representation. One start on answering the
question was made in the STRIPS program (Fikes and
Nilsson, 1971; Fikes, Hart, and Nilsson, 1972). STRIPS
augments its initial set of operators by discovering,
generalizing, and remembering macro-operators, composed
of sequences of primitive operators, as it gains

Al MAGAZINE Winter 1980-81 5

problem-solving experience. Another idea was used in the
ABSTRIPS program (Sacerdoti, 19741, which implements
the idea of planning, in the sense of defining and solving
problems in a search space from which unimportant details
have been omitted. The details of the solution are filled in
(by smaller searches within the more detailed space) only
after a satisfactory outline of a solution, or plan, has been
found. Planning is a major topic itself, discussed in
Volume III of the Handbook.

The Meaning of Heuristic and Heuristic
Search
Although the term heuristic has long been a key word in

AI, its meaning has varied both among authors and over
time. A brief review of the ways heuristic and heuristic
search have been used may provide a useful warning
against taking any single definition too seriously.

As an adjective, the most frequently quoted dictionary
definition for heuristic is “serving to discover.” As a noun,
referring to an obscure branch of philosophy, the word
meant the study of the methods and rules of discovery
and invention (see Polya, 1957, p. 112).

When the term came into use to describe AI techniques,
some writers made a distinction between methods for
discovering solutions and methods for producing them
aigorithmically. Thus, Newell, Shaw, and Simon stated in
1957: “A process that may solve a given problem, but
offers no guarantees of doing so, is called a heuristic for
that problem” (Newell, Shaw, and Simon, 1963, p. 114).
But this meaning was not universally accepted. Minsky,
for example, said in a 1961 paper:

The adjective “heuristic,” as used here and widely in the
literature, means telaied to b~ptovi~rg problem-sohi~~~ pm ftiltnat7ce,

as a noun it is also used in regard to any method or tlick used to
improve the efficiency of a problem-solving program Rut
imperfect methods are not necessarily heuristic, nor vice versa
Hence “heutistic” should not be legaIded as opposite to
” foolproor’, this has caused some confusion in the literature
(Minsky, 1963, p 407n)

These two definitions refer, though vaguely, to two
different sets: devices that improve efficiency and devices
that are not guaranteed. Feigenbaum and Feldman (1963)
apparently limit heuristic to devices with both properties:

A hmistic (hewistic tule, hewistic method) is a rule of thumb,
strategy, trick, simplification, or any other kind of device which
drastically limits search for solutions in large problem spaces
Heuristics do not guarantee optimal solutions; in fact, they do
not guarantee any solution at all; a// that can be said /b/ a u.yfitl
hewistic is that it qff@ts solutions which ale god enough nest of the
time (p 6; italics in original)

Even this definition, however, does not always agree
with common usage, because it lacks a historical
dimension. A device originally introduced as a heuristic in
Feigenbaum and Feldman’s sense may later be shown to

guarantee an optimal solution after all. When this
happens, the label heuristic may or may not be dropped. It
has not been dropped, for example, with respect to the A*
algorithm. Alpha-beta pruning, on the other hand, is no
longer called a heuristic. (For descriptions of both
devices, see Nilsson.)

It should be noted that the definitions quoted above,
ranging in time from 1957 to 1963, refer to heuristic rules,
methods, and programs, but they do not use the term
heuristic search. This composite term appears to have been
first introduced in 1965 in a paper by Newell and Ernst,
“The Search for Generality” (see Newell and Simon, 1972,
p. 888). The paper presented a framework for comparing
the methods used in problem-solving programs up to that
time. The basic framework, there called heuristic search,
was the one called state-space search in the present chapter.
Blind search methods were included in the heuristic search
paradigm.

A similar meaning for heuristic search appears in Newell
and Simon (1972, pp. 91-105). Again, no contrast is
drawn between heuristic search and blind search; rather,
heuristic search is distinguished from a problem-solving
method called generate and test. The difference between
the two is that the latter simply generates elements of the
search space (i.e., states) and tests each in turn until it
finds one satisfying the goal condition; whereas in heuristic
search the order of generation can depend both on
information gained in previous tests and on the
characteristics of the goal. But the Newell and Simon
distinction is not a hard and fast one. By the time of their
1976 Turing Lecture, they seem to have collapsed the two
methods into one:

Heuristic Search A second law of qualitative structure for AI
is that symbol systems solve problems by generating potential
solutions and testing them, that is, by searching (Newell and
Simon, 1976, p 126)

In the present chapter, the meaning attached to heuristic
search stems not from Newell and Simon but from
Nilsson, whose 1971 book provided the most detailed and
influential treatment of the subject that had yet appeared
(see also Nilsson, 1980). For Nilsson, the distinction
between heuristic search and blind search is the important
one. Blind search corresponds approximately to the
systematic generation and testing of search-space
elements, but it operates within a formalism that leaves
room for additional information about the specific problem
domain to be introduced, rather than excluding it by
definition. If such information, going beyond that needed
merely to formulate a class of problems as search
problems, is in fact introduced, it may be possible to
restrict search drastically. Whether or not the restriction is
foolproof, the search is then called heuristic rather than
blind. n

(teferences continued page 23)

6 Al MAGAZINE Winter 1980-81

For Decsystem-20, Tops-20, Vax, and VMS:
Consult your friendly local DEC salesperson
Interlisp is available through DECUS.

For Interlisp on VAX:
Mel Pirtle
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90291
(PIRTLE @ ISIB)

For Maclisp and NIL:
Jon L. White
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139
(JONL @ MIT-MC)

For Eunice:
David Kashtan (technical questions)
Chuck Untulis (administrative questions)
SRI International
Computer Resources
333 Ravenswood Ave.
Menlo Park, California 94025
(KASHTAN @ SRI-KL, UNTULIS @ SRI-KL)

For Lisp Machines:
Russell Nofsker Steve Wyle
Symbolics, Incorporated Lisp Machines, Incorporated
605 Hightree Road 163 N. Mansfield Ave
Santa Monica, Ca. 90402 Los Angeles, Ca 90036
(213) 459-6040 (213) 938-8888

For PERQs:
Three Rivers Computer Corporation
720 Gross St.
Pittsburgh, Pa 15224
(412) 621-6250

For Jericho:
Jim Calvin
Bolt, Beranek, and Newman
50 Moulton St
Cambridge, Mass. 02138
(617) 491-1850 x4615
CALVIN BBN-TENEXG

For Spice:
Scott E Fahlman
Department of Computer Science
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pa 15213
(FAHLMAN @ CMUA)

Search
(continued from page 6) References

Amarel, S On representations of problems of reasoning about actions In
D Michie (Ed), Mac/line /n/e//igeme 3 New Yolk: American
Elsevicr, 1968 Pp 131-171

Feigenbaum, E A, and Feldman, J. (Eds 1 Cof?Iplrfef s nntl Tholrghr
New York McGraw-Hill, 1963

Fikes, R E, Halt, P, and Nilsson, N J Learning and executing
generalized robot plans A,f$ciu/ I~rtelligmce, 1972, 3, 251-288

Fikes, R E, and Nilsson, N J STRIPS A new approach to the
application of theotern proving to problem solving A/ t$ciu/
/n/e//igencr, 197 1, 2, 189-208

Good, I J A five-year plan fol automatic chess In E Dale and
D Michie (Eds), Mnchirre /tM/i,qme 2 New York: American
Elsevier, 1968 Pp 89-118

Kowalski, R And-or graphs, theorem-proving graphs, and bi-directional
search In B Meltzer and D Michie (Eds), Muchiue fnlelligencc 7
New York Wiley, 1972 Pp 167-194

Minsky, M Steps toward artificial intelligence In Feigenbaum and
Feldman, 1963 Pp 406-450

Newell, A , and Ernst, G The search fat generality In W A Kalenich
(Ed), /n/ivtnn/iotr Ptoccssitll: 196.5 P~oc IFIP COI~~MYS 65
Washington Spattan Books, 1965 Pp 17-24

Newell, A , Shaw, J C , and Simon, H A Empirical explorations with
the logic theory machine A case history in heuristics In
Feigenbaum and Feldman, 1963 Pp 109-133

Newell, A , and Simon, H A /l~lnan hohlem Solving Englewood Cliffs,
N .I : Prentice-Hall, 1972

Newell, A, and Simon, H A Computer science as empirical inquiry:
Symbols and search The 1976 ACM Turing Lecture COWVll
ACM, 1976, 19, 113-126

Nilsson, N J P/oh/em-Sohitrg Methods it? A//$cial l~~tdligc~7ce New York:
McGraw-Hill, 1971

Nilsson, N .I P/incip/e.s q/ A~r$cin/ It~c//ige?~ce Palo Alto, Calif Tioga,
1980

Pohl, I Bi-directional search In B Meltzer and D Michie (Eds),
Mnchiuc Intelligeme 6 New York: American Elsevier, I971 Pp
127-140

Polya, G Ho,,, /o .So/vc~ lf (2nd ed) New York Doubleday Anchor,
1957

Raphael, B The Thirkirrg Compufe~ San Francisco Freeman, 1976

Sacerdoti, E D Planning in a hierarchy of abstraction spaces Att$cicrl
/n/e//iget7te, 1974: 5, 1 IS- 135

Samuel, A L Some studies in machine learning using the game of
checkers In Fcigenbaum and Feldman, 1963 Pp 71-105

Shannon, C E Programming a computer for playing chess Philosophicnl
Magazine (Series 7), 1950, 41, 256-275

Shannon, C E A chess-playing machine In J R Newman (Ed 1, The
World qf Mathetnutics (Vol 4) New York Simon and Schuster,
1956 Pp 2124-2133

Al MAGAZINE Winter 1980-81 23

