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umes of fast-chang-
ing sensory data that
one needs to process
to safely operate the
technology. In other
articles, we address
the errors that the
operators make and
some ideas for cor-
recting them, for
example, see Silver-
man (1992a, 1992b).
However, their mis-
takes are often the
least serious ones in
a long chain of errors,
starting with those
introduced in the
design, development,
and maintenance
processes. To put 
it another way, 
the technology is
designed in such a
way that operators
can hardly be
expected to avoid
accidents. When the
environment is
stable, the human
operator can reach
safe decisions. When
the environment
becomes unstable,
there is no time for
the human to pro-

cess all the variables to avoid accidents. Most
technology represents accidents waiting to
happen. 

For example, in the Challenger explosion,
the shortcomings of the O-rings had been
known for several years. However, designers
left them in, and managers obscured the

Human error is an
increasingly impor-
tant and addressable
concern in modern-
day high-technology
accidents. Avoidable
human errors led to
many famous acci-
dents, including
Bhopal, the space
shuttle Challenger,
Chernobyl, the
Exxon Valdez, and
Three Mile Island.
Many hundreds of
thousands of nonfa-
mous accidents occur
each year that are
equally or more
avoidable. Dramatic
examples make the
local headlines, such
as car crashes, train
and plane wrecks,
and military-related
operations mishaps.
Less dramatic conse-
quences happen
even more frequent-
ly because of mil-
lions of mundane
errors that appear
daily in the products
we use (for example,
poorly designed cars),
the processes we are
affected by (for example, banking or health-
care institutions), and the automation that
surrounds us (for example, unfriendly comput-
ers that expect us to adapt to their interfaces).
We get by because humans excel at coping.

High-technology accidents occur because
the human mind is ill tuned to the large vol-

Expert Critics in 
Engineering Design: Lessons
Learned and Research Needs

Barry G. Silverman and Toufic M. Mezher

Criticism should not be querulous, and
wasting, all knife and root puller, but guid-
ing, instructive, inspiring, a South wind,
not an East wind.

—Ralph Waldo Emerson

An engineer who creates a design needs to deter-
mine whether the design is free of errors that can
lead to high manufacturing costs, tragic acci-
dents because of design defects, low use because
of poor product quality, and a host of other
downstream concerns. The domain of engineer-
ing design is much harder than other domains,
and errors are more likely to arise and remain
undetected until it is too late to do something
about them. One way to reduce these errors is to
introduce the use of expert critics into the designer’s
electronic support environment.

Critics are a promising approach for organizing
a next-generation design support environment
(DSE). Unfortunately, expert- critiquing theory
offers inaccurate but widely followed guidance
for helping builders create usable critic programs.
Existing critics rely on batch, after-task, debias-
ing of experts. This form of criticism turns out to
be overly limited and too often leads to user frus-
tration. As a step toward correcting this deficien-
cy, this article presents lessons learned from
following the incorrect theory along with guid-
ance for a more robust approach to criticism
system construction. Future research needs are
also identified that should help builders realize
the full potential of critics in engineering DSEs.
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The design
task consists

of a generate-
test-refine-
remember

process.

potential for disaster. At Three Mile Island,
the faulty display of sensor-valve readings, a
plethora of maintenance and management
errors, and a control panel design that flashed
hundreds of alarms simultaneously all con-
tributed to the disaster. Likewise, when the
British fleet was sent to defend the Falkland
Islands from the Argentines, the ship design
forced the British to turn off their warning
radars to clear the waves so they could use the
radios to receive instructions. It was at this
point that the Argentines released their mis-
sile and sank an unsuspecting British ship.

Each of these accidents was an impossible
accident (Wagenaar and Groeneweg 1988) in
the mind of the operator. The operator had 
no inkling of the ramifications of the system
designs under the current operating conditions.
Also, once the accident sequence begins, the
operator has virtually no way out. The remark-
able thing is that accidents don’t happen
more often.

An entire community of professionals 
contributes to these accidents. Silverman
addressed the role of requirement writers and
system testers (1983, 1985, 1991a) and main-
tainers (1992a) in contributing to the technol-
ogy mistakes long before they happen. In this
article, we discuss the contribution of designers
to accidents and the prospects for intelligent
computer-aided design (ICAD) to mitigate
such problems. Specifically, we examine the
naval ship design domain to avoid tragedies
such as befell the British. However, this prob-
lem is not just specific to the British; it is also
a top priority or “red flag” for the United
States Navy (Fowler 1979). Electromagnetic
interference problems are also increasingly
evident on civilian automobiles, airplanes,
and ships that cram telephones, radios, com-
puters, radar devices, and other electromag-
netically incompatible devices into close
proximity. Finally, the implications of this
domain are relevant to all engineering design
applications that must factor any operational
(or manufacturability, sales, or other down-
stream) concerns into the design step. (Here,
downstream refers to issues that arise after a
product is designed.)

Modern society is on the verge of an explo-
sion of smart, forgiving systems that will dra-
matically improve all aspects of the safety 
and quality of life. Before this explosion can
happen, however, we need more knowledge
of, and theories about, two things. First, we
need better models of human error. Oh, there
are lots of possible explanations for any given
error. However, there are few, precise,
computer-implemented models that can pre-
dict where errors will occur and why. Second,

we need better models of the error surfaces
that will show the steepest-ascent paths toward
error correction. In other words, we need
better theories of explanation. What feedback
strategy (for example, story telling, first-prin-
ciple lecturing) will most constructively cor-
rect the human error?

There are many accounts in the intelligent
tutoring system literature of novice errors and
bugs, novice skill development, and novice-
expert differences. However, there are no
models there or in the AI literature of errors
that proficient performers, or experts, make,
but it is the so-called experts’ errors that are of
concern in each of the examples mentioned.
The errors result from proficient task perform-
ers practicing in a natural environment; they
are not the result of students working in a
classroom. New error and critiquing models
need to capture and reflect this difference.
Describing results to date in deriving and
applying these models in engineering design
is the purpose of this article.

The Design Process and a 
Taxonomy of Frequent 

Designer Mistakes
This section examines the first goal, that of
explaining the designer’s error processes. We
begin by examining the design process and
the cognitive difficulties it poses.

The Design Process

The design task consists of a generate-test-
refine-remember process. The designer uses a
variety of cognitive operators to generate a
design, test it under various conditions, refine
it until a stopping rule is reached, and then
store the design as a prototype or analog to
help start a new process for the next design
task. The design process is sufficiently com-
plex that a correct and complete design
simply cannot be deduced from starting con-
ditions or simulation model results. An itera-
tive refinement occurs in which the design is
heuristically arrived at over a number of life-
cycle repetitions of the generate-test-refine-
remember steps. For example, these steps are
attempted to create a conceptual design; a
technical design; and, finally, a fully opera-
tional design. In each life-cycle stage, a design
is postulated, tested, and refined. This process
is sometimes referred to as the waterfall model
of the life cycle because the iterations of the
process are like several cascades that ultimately
combine into a robust design. 

Adding the remember step transforms the
waterfall model into a memory-intensive pro-



cess that more nearly mimics one prevailing
view of the designer’s cognition. In this view,
which is adopted here, the generate step is
aided by decomposing the problem into sim-
pler subproblems that the designer has solved
before. These previously solved subproblems
are analogs that need to be merged and adapt-
ed for the needs of the current design task.
The analogical reasoning process proceeds
opportunistically with diverse agents propos-
ing, testing, adjusting, and retracting alterna-
tive analogs, prototypes, and ideas. This process
permits varying viewpoints and different dis-
ciplines to be accommodated. 

Each of the generate-test-refine-remember
steps uses cases and heuristics. However, they
also rely on model-based reasoning. For one
thing, the designer forms a hypothesized
mental model of the design. He/she struggles
to express this model in terms and representa-
tions that others can use and, in so doing,
improves his/her own internal model. Design
details rapidly outgrow the capacity of the
human brain to store them, and often, they
are represented as a computer model of the
design. Once this representation activity
begins, much effort goes into trying to get the
computer’s and human’s models of the design
to equate. The computer offers a vital cogni-
tive extension to the human designer’s abili-
ties. It helps him/her to express or visualize
his/her design (computer-aided design
[CAD]), store its myriad details (databases),
and analyze the impacts of his/her model of
the design (numeric simulations). The effort
proceeds at several levels. For example, at the
syntactic level, the designer must master the
language of the computer tools; at the seman-
tic level, the designer must guarantee that
first principles and heuristics are followed;
and at the pragmatic level, the designer must
assure that the various components of the
design fit together and work in the real world.
It is design failures at the pragmatic level that
left the British ship vulnerable in the Falklands. 

After reaching equality of the two design
models, the human can exploit the comput-
er’s visualization and testing capabilities to
help his/her refinement efforts. Also, once 
the computer acquires the designer’s mental
model of the design, it can facilitate future
remembering steps. Finally, because the pro-
cess is semiautomated, the insertion of critics
is eased.

The cognitive process just described is too
poorly understood and too broad in scope to
construct an expert system capable of doing
the entire design task. Fortunately, critics are
not expected to perform the entire task on
their own. They can be inserted to help any

or all of the generate-test-refine-remember
process steps, waterfall life-cycle stages, or
syntactic-semantic-pragmatic model levels.
They exist solely to cue the domain expert
and act as an intelligent prosthetic device
that makes expert system technology palat-
able to the human expert. Just as the spelling
and grammar checkers are unable to author a
memo, so are the more sophisticated engi-
neering design critics unable to draw a design.
However, both types of critics are useful adju-
vants to help the expert improve his/her per-
formance on a minimal interference basis.

Interestingly, a critic can be deployed in an
application with unknown goals. For exam-
ple, one can use spelling or grammar checkers
to help in word processing tasks where the
critics don’t know the purpose of the docu-
ment. However, critics cannot be deployed
where they don’t know the proper cues of the
subtasks of interest. Thus, there could be no
spelling checker in the absence of a formal-
ized language. Likewise, there can be no
design critic in the absence of engineering
discipline knowledge and heuristics.

Although the niche just described might be
a necessary set of conditions for the expert-
critiquing class of programs, it is insufficient
for assuring that the critic is as effective as
possible. Additional conditions exist that dic-
tate how a given critic should interact with its
users. It is also vital to identify the errors that
designers frequently make. To support experts,
we must design systems that recognize the
corners they get stuck in, the pitfalls they fall
prey to, and the obstacles they confront. That
is, for critics to work, it is essential to predict
the errors that will arise and the repairs (criti-
cisms) that will be needed.

Taxonomy of Errors in Design Tasks

A generic model of human error processes
useful for building critics appears in Silverman
(1990, 1991b, 1992a) and is briefly summa-
rized here. Specifically, there are two major
types of errors that critics can help overcome:
(1) In the realm of knowledge, critics inform
the user with knowledge and constraints or
criticize the knowledge the user has offered.
(2) In the realm of judgment, they criticize
the user’s reasoning, judgment, and decision
processes. These two error types correspond
to the distinction between “missing concept”
and “misconception.” They also capture the
difference between “knowledge base” and
“inference engine,” terms used in the expert
system field. The knowledge base holds the
domain insight. The inference engine performs
domain-independent reasoning and manipu-
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lates the knowledge to solve problems. 
To better grasp the differences between

these alternative uses of critics, it is useful to
visualize knowledge in the expert’s mind as
consisting of four principal categories. Figure
1 presents these categories. Figure 1a shows
the human task practitioner to be focusing
his/her attention on two categories of knowl-
edge. He/she sees B, which is part of the nor-
mative and correct knowledge required to
successfully complete the task. For various
reasons of bias in judgment, the human also
focuses on A, which is irrelevant to the task.
In addition, the human often ignores two
other categories of knowledge that are critical
to successful task outcomes. The human
ignores C, again for reasons of biased judg-
ment. In D, the practitioner is unaware
because of incomplete or out-of-date training.

Let us return to the analogy between the
human and an expert system. Categories B,
C, and D must all be in the expert’s knowl-
edge base to successfully complete the task.
However, the human is only aware of knowl-

edge in categories A and B. Further, he/she
has a biased judgment or inference engine.
He/she omits C. Instead, he/she correctly
infers B but incorrectly infers the need for A
(irrelevant knowledge). He/she erroneously
proceeds to match A and B to the task
attributes. He/she then acts on any resulting
conclusions. There is no hope that this
domain expert can reach the correct task out-
come no matter how well he/she reasons
about A and B.

The problem of focusing on B rather than 
B and C is a selective perception bias. This bias
is important. If one incorrectly defines the
problem to begin with, no amount of pro-
cessing or computation can compensate for
the initial bias-induced error. It is critical that
one consider the full set of decision dimen-
sions or problem features. An effective prob-
lem solver misses few, if any, cues because of
mental myopia or a training deficiency.

This categorization is not strictly concerned
with what information the subject matter
expert selects and focuses on. The categoriza-

(a)

(b)

D
Missing
knowledge

B C
Correct
knowledge

Overlooked
Knowledge

not
Irrelevant
Knowledge

A

Knowledge Required to
Complete the Task Properly

B   +   C   +   D

What the
Human
Needs
To Do:

What the
Human
Actually
Does:

Human 
Focuses
Here (B is
Correct, A
is Due To Bias)

Human
Omits C
Due To 
Bias

Human
Omits D
Due To 
Lack of
Training

Ignore
Irrelevant
Knowledge

Use 
Required
Knowledge

not

Figure 1. Categorizing a Human Expert’s Knowledge. Human error is the result of
misuse of various types of knowledge. 

Figure 1a shows that the human needs to ignore irrelevant knowledge (A) and use required knowledge (B, C, and D).
Instead, humans often focus on A and B (correct knowledge) alone. They overlook some of their normative knowledge
(C) or are missing some of the other normative knowledge (D) needed to correctly complete the task. The expert critic
must help humans to eliminate A and use overlooked (C) and missing (D) knowledge, as figure 1b shows.



tion in figure 1 is also about how proficient
humans combine and process knowledge to
arrive at correctly completed task outcomes.
That is, another commonly recurring weak-
ness in practitioners is their inability to com-
bine the more mundane information that
they must routinely process. 

Applying the Generic Taxonomy to
Design Tasks

Just as there is no space to delineate the full
model of human error processes, there is also
insufficient space to explain its full instantia-
tion in the design domain. Further, a com-
plete model of errors in the design task
requires a research undertaking that involves
a significant and longitudinal descriptive field
study to complete. Still, the model about to
be presented offers useful guidance to critic
designers in an operational sense. 

At the highest level, the taxonomy of the
previous subsection suggests that designers
suffer from misconceptions and missing con-

cepts. Table 1 depicts these two error classes
along with a sample of illustrative lower-level
processes that contribute to these error class-
es. Misconceptions cover both the errors of
commission (category A) with, and omission
(category C) of, knowledge in the expert’s
knowledge base. Misconceptions can arise
because of one of three principal reasons:
accidents, cognitive biases, or motivations.
Accidents are attentional slips or memory
lapses that tend to be nonrepetitive but get by
the designer “this time.” As an example of an
attentional slip, a ship designer who routinely
specifies the cable shielding intends to double
the shielding on all cables. He/she does so on
the first cable and then forgets to repeat the
adjustment when he/she writes out the addi-
tional cable specifications. A memory lapse
example might be when a ship designer
begins to specify the grounding paths for all
circuits, he/she is interrupted by a computer
crash. By the time he/she reboots his/her
computer, he/she forgets that he/she has not
completed grounding all the circuits. Slips
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Table 1. Categories of Possible Designer Errors and Sample of Illustrative Causes. 
There appear to be three reasons that humans add irrelevant knowledge and overlook normative cues: slips and lapses,
cognitive biases, and motivational biases. Missing concept–related errors, in turn, appear to be caused by a variety of
training-related reasons. Recognizing which of these causes leads to an error can help a critic do a better job of assist-
ing humans in removing their errors. For example, missing concept–related causes suggest tutoring as a repair strate-
gy. However, tutoring would be highly inappropriate if the error were the result of one of the other causes.

MISCONCEPTIONS - Commissions (Category A) and Omissions (Category C)

ACCIDENTS/SLIPS/LAPSES
Memory Lapses
Skill Slips

COGNITIVE BIASES
Availability Bias in Information Aquisition
Representativeness Bias in Information Processing
Confirmation Bias in Feedback Processing

MOTIVATIONAL BIASES
Corporate and Societal Culture
Need to Belong
Reward Systems

MISSING CONCEPTS - Category D Errors

Insufficient Training
Knowledge Decay/Half Life
Rotation to New Position/Promotion
Interdisciplinary Breadth of Engineering Domain



design relatively unsafe cars by American
standards. Likewise, a proficient FORTRAN pro-
grammer’s Lisp code often looks (unsurpris-
ingly) like FORTRAN. In the naval ship design
business and many large project offices, the
motivational biases imposed by management
are often to always complete the task on time
and on budget, even at the expense of creating
tools and databases that would make the next
design project quicker, cheaper, and better. 

The other major error class given in table 1
is the missing concept–related error (category
D). Engineering is such a multidisciplinary
and broad endeavor that no individuals know
how to design a complete system such as a
ship. Each expert designer will always have
edges to his/her expertise beyond which
he/she is fallible or a non-expert. Teams of
designers, each member of which has a differ-
ent specialty, must cooperate to complete the
task, which means that the design team man-
ager doesn’t truly know if the design is
robust. Instead, he/she often develops a sense
of trust in his/her designers’ decisions based
on whether his/her advice passes whatever
testing is attempted and whether his/her
designs appear to work in the field conditions
that the finished systems have encountered
to date. Add the five-year half-life of most
engineering knowledge, and the potential
grows quite high that designs will be fielded
that are out of date and ill conceived. The
loss of sailors’ lives on the SS Stark, which
burned for 18 to 20 hours after being struck
by two Iraqi Exocet missiles, was compound-
ed by the Navy’s continued use of lightweight
aluminum and Kevlar armor. This use contin-
ued despite the design lesson learned from
the British Falklands experience that frigates
should be built with more survivable, all-steel
superstructures.  

In summary, the list of classes and cate-
gories of errors in table 1 is the top level of a
checklist that critic designers can use to deter-
mine what types of critics to design and
deploy for a given design domain. Although
this list is incomplete, it provides guidance
and indicates places to look further. Over
time, this list will hopefully be extended into
a fully operational set of critic needs and trig-
ger guidelines for the design domain. 

The Role for Expert-Critiquing
Systems in Design Support 

Environments
The standard tools used by today’s designers
include CAD packages to help generate
designs, simulators for testing them, and
databases and parts libraries for helping the

and lapses occur in numerous fashions and
are an important source of design errors. For
a more thorough discussion of slips and
lapses in general, see Reasons (1990).

Cognitive biases, unlike slips and lapses, are
tendencies the designer is likely to repeat.
Elsewhere, we explain a great many such ten-
dencies and how critics can exploit them (Sil-
verman 1990, 1991a, 1992a). Table 1 lists
three such biases, one each for the availability,
representativeness, and confirmation heuristics.
These three biases are judgment heuristics
that humans routinely use to save problem-
solving time in the information collection,
processing, and evaluation steps, respectively.
Unfortunately, these heuristics are highly
prone to misuse, as Kahneman, Slovic, and
Tversky (1982) so aptly illustrate. As an exam-
ple, a ship designer only considers design
alternatives that he/she or a trusted contact
has used before (the availability bias). He/she
uses simple versions of Kirchoff’s laws to test
antenna locations for frequency incompati-
bilities (representativeness bias). Finally and
paradoxically, he/she suffers no loss of confi-
dence in his/her approach either because of
its oversimplicity or deleterious after-action
reports from the field (confirmation bias). Sil-
verman (1985) reports an actual design case
at the National Aeronautics and Space
Administration, where almost this exact
sequence of biases arises repeatedly in space-
craft system design processes. 

The third cause of misconceptions, like
cognitive biases, tends to be repetitive. Unlike
cognitive biases, however, they might or
might not be subconscious. Specifically, moti-
vational biases tend to be goals and values the
designer picks up from his/her environment
and internalizes into his/her mental model of
the design task. Japanese designers are not
better suited biologically than Americans at
designing higher-quality and more aestheti-
cally pleasing automobiles, nor are they
better able biologically to use computer-aided
ship design tools. These differences result
from environmental forces such as societal
values and corporate culture. Motivational
biases help the designer to conform, fit in,
and belong. They can also cause the proficient
designer to commit design errors when he/she
is expected to shift mental models. For exam-
ple, a Japanese car designer would tend to
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Cognitive biases…are tendencies the designer
is likely to repeat.



remember step. This collection of tools and
others are referred to here as the design support
environment (DSE). Figure 2 shows that the
human gives design specifications to DSE and
receives feedback in return. Both DSE and the
human can adapt to each other as the process
continues. For example, the human can alter
his/her design because of criticism, and the
critic can store a new design for later reuse.

Inside DSE are three layers: information,
visualization and analysis, and synthesis and
knowledge base. These layers are an attempt
to make the machine’s model of the design
easier to specify and understand. Each layer is
bisected by a dashed line to distinguish the
generate-versus-test capabilities.

At the lowest or innermost DSE layer are
the databases and models of the domain that
permit the machine to generate, test, and
remember design elements. It is a vital layer,
without which the machine could not per-
form its share of the duties. The structure and
validity of the databases and models deter-
mine what degree of support DSE offers. How-
ever, the information in this layer is almost
illegible to most designers. This layer is also
where the knowledge bases of the outermost
layer are held.

The middle layer exists to help the designer
visualize the machine’s model and command
its generate-and-test activities. It includes
CAD and block-diagram packages to help gen-
erate the design specifications as well as
graphics to display the results of the simula-
tions. Also important here are the database
and model base management systems that
provide a fourth-generation language so that
the designer can manipulate structures of the
innermost layer, set up searches and tests,
generate reports, and so on.

The outermost layer is rarely found in prac-
tice but represents the state-of-the-art ideas
for further improving the design process.
Included is a host of ideas for getting the
machine to perform more as an intelligent
design assistant. These items include ways to
further insulate the designer from having to
translate his/her model into the machine’s
innermost model, improved capabilities for
testing and refining designs, and dynamic
remembering abilities. No one yet has inte-
grated all the various proposals for this layer,
although many of the pieces about to be
described can be seen, often in prototype
form, in different vendor booths at the
annual National Conference on AI. Also,
interesting proposals for integration exist in
Fischer (1989), Jakiela (1990), Kelly (1984),
and Lemke (1989), among others. 

Some of the more practical elements of the

third layer are as follows: Knowledge-acquisi-
tion systems interview the designer for speci-
fications and translate them into middle-layer
entities such as block diagrams, fault and
event trees, and simulation setup files (Boose
1989). This process can ease the tedium of the
generation step, thus reducing some of the
slips and lapses. Case-based design assistants
alleviate availability biases and other remem-
bering errors. They examine design problem
characteristics and retrieve and adapt designs
for similar past problems to fit the needs of
the current or target problem (for example,
see Murthy and Addanki [1987]). Expert sys-
tems help the designer decide which models
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USER

Initiate Task:
		> Problem Description
		> Specification
		> Proposed Design
			

Feedback

Specify

Remember Successfully Tested Designs

Test the DesignGenerate the Design

VISUALIZATION AND ANALYSIS LAYER

Database Management System
CAD Package
Block Diagram Package

Model Base Management System
Graphic Based Simulators
Reliability Plots

INFORMATION LAYER

DATABASES

Parts Library
Past Parts Use
Parts Performance History
Past Designs (Analogs)

MODEL BASES

First Principles for Simulators
Qualitative Heuristics
Constraints/Violations Files
Numerical Characterizations

		> Criticism
		> Feedback
		> Explanation
		> (Possibly Also
				   Influencing + Repair)

KNOWLEDGE BASED COLLABORATOR AND SYNTHESIS LAYER

Knowledge Acquisition Aids
Case Based Design Suggestor
Large Scale, Reuseable KBs
Opportunistic Specialist Agents

Decison Networks of Critics
Qualitative Constraint Critics
Viewpoint Argumentation System
Hypermedia Explanation Agents

Figure 2. Layered Model of a Design Support Environment (DSE). 
The standard tools used by today’s designer include computer-aided design packages to
help generate designs, simulators for testing them, and databases and parts libraries
for helping the remember step. This collection of tools and others are referred to here as
DSE. Inside DSE are three layers: information, visualization and analysis, and synthesis
and knowledge base. These layers correspond to the attempt to make the machine’s
model of the design easier to specify and understand. Each layer is bisected by a
dashed line to distinguish the generate-versus-test capabilities.



Also, simulators, design analyzers, and the
like cover only small aspects of the design-
testing and design-critiquing process. They
leave it to the human to decide what the tool
covers or omits. Thus, the design must rely
on human judgment for major aspects of its
coherence (completeness, consistency), clari-
ty, and correspondence to pragmatics of real-
world conditions.

Expert critics can fill these and other voids:
(1) Critics compare the current design to a
store of common erroneous designs. They
report any errors to the user. (2) Critics check
the current design for violations of good
design rules, cues, and constraints that design-
ers frequently tend to overlook or misuse.
They can also run the simulation models to
isolate and numerically explain analyzable
errors. (3) Critics provide feedback and situat-
ed tutoring on syntactic-semantic-pragmatic
specialties missing from the typical designer’s
training. (4) Critics have the potential to
organize and give purpose to the many other
ideas for the DSE knowledge-based layer.
They can also decide when to invoke the other
adjuvants, when to hide too much informa-
tion from the user, how to explain qualitative
and quantitative results, and so on. 

This last point implies the critiquing pro-
cess can and should be more than just anoth-
er tool for the third layer of DSE. It can serve
as an integrating paradigm for the deploy-
ment of this entire layer. By definition, criti-
cism is a mutual communication and
collaboration process in which both parties,
not just the criticism recipient, engage in a
search for truth or correctness. This collabora-
tive search is the exact social process the
designer desires from DSE.

Further, recent human factors results sug-
gest that expert systems, unlike expert critics,
are the wrong paradigm for this DSE layer.
Although they are often found in support-
the-expert roles, expert systems increasingly
appear to have poor human factors when
applied to decision-aiding settings (for exam-
ple, see Langlotz and Shortliffe [1983]; Klein
and Calderwood [1986]; and Roth, Bennett,
and Woods [1988]). More of a joint collabora-
tive orientation is warranted than expert
system technology, alone, supplies. In fact,
this concept was the motivation behind
Miller’s (1983) seminal work in researching a
role for critics in medical decision making.
Doctors, like designers, are not novices, and
they interact poorly with expert systems.
Expert critics are different from either expert
systems or expert advisory systems. Both
expert systems and expert advisory systems
only accept the problem statement as input

to use for the simulation, and they help set
up, run, and display and explain the results
(for example, see SACON in Hayes-Roth, Water-
man, and Lenat [1983]). Large-scale, share-
able, reusable engineering knowledge bases
also might exist in several years that can
assist in qualitative design simulations as well
as provide a breadth to the machine’s under-
standing of the designer’s intentions (for
example, see Forbus [1988]). Hypertext and
hypermedia systems help explain both the
DSE components and the results of its simula-
tions to the curious designer. Finally, expert
critics exist for specific engineering domains
that check the design from heuristic view-
points that simulators ignore or that save
time in having to simulate to find errors that
are already heuristically identifiable (for
example, see Kelly [1985], Steele [1988], or
Spickelmier and Newton [1988]).

Expert-critiquing systems are a class of pro-
gram that receive as input the statement of
the problem and the user-proposed solution.
They produce as output a critique of the
user’s judgment and knowledge in terms of
what the program thinks is wrong with the
user-proposed solution. Some critic programs
also produce corrective repairs, but others
attempt to prevent the user from committing
some more common judgment errors in the
first place. Critic programs can be user
invoked (passive critic) or active critics. They
can work in batch mode (process the entire
solution after the user has finished it) or
incremental mode (interrupt the user during
his/her problem-solving task).

Expert-critiquing systems are ideal when
the user can generate his/her solution to a
recurring problem. Critics help when users
commit the types of errors that machines are
good at eliminating. Specifically, critics can
cause the user to notice and use more cues.
Thus, in engineering design applications, the
user would fill in missing concepts and cor-
rect misconceptions. 

CAD itself provides no feedback on the
value of a given design despite the fact that
commonly repeated poor designs are easy to
store, match against, and feed back to the
user to indicate his/her errors. Numeric simu-
lations can help the user isolate poor design
attributes. However, these simulations
depend on the user specifying the precise
input data that precipitate the poor design
feature to show up or that cause the flaw that
reveals the error. The user’s input don’t
always cover the portion of the performance
space in which a flaw appears. The simulator
doesn’t have the capability to heuristically
notice the problem and warn the designer.
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and provide their machine-generated solution
as output. Unlike the expert critic, expert sys-
tems and expert advisory systems do not eval-
uate the user-proposed solution. This
difference suggests that expert critics are
better suited for DSE applications. 

An Example Critic to Test the 
Potential Benefits

With so much evidence pointing to the criti-
cism benefits just enumerated, it was decided
to conduct an investigation to see if they
could be realized. However, how should the
critic be constructed to reap the most benefit?

The classical critiquing systems, such as
Miller (1983) and Langlotz and Shortliffe
(1983), take the position that critiquing in
batch, after-task mode is critical. This approach
avoids interrupting, pestering, or distracting
highly skilled domain experts. The publica-
tions cited here indicate that the critic should
never interrupt prior to the expert commit-
ting a potential error. It’s not clear to what

extent this position is critic builder judgment
versus actual empirical result. 

This conventional wisdom of how critiquing
should work has reappeared in many critics
built since those of Miller and Langlotz and
Shortliffe. For example, spelling and grammar
critics use few strategies and only after-task,
passive debiasers. Similarly, Kelly (1984) and
many subsequent engineering design critics
adhere to this same wisdom (see Steele [1988],
Spickelmier and Newton [1988], Jakiela [1990],
Fischer [1989], and Lemke [1989]). Silver-
man’s first foray into the critic construction
process in 1988 followed this same guidance.

The example engineering design critic is a
prototype that helps the ship designer who
must make decisions about where to place
antennas on the topsides and superstructure.
Figure 3 shows that the users have a CAD
package that supports a variety of typical fea-
tures in the preparation of the drawing. It
allows them to create objects or select from a
library, drag objects around the drawing, and
zoom in or change the view to work on fine
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Antenna Ordnance Stack Object
X = 495.00
Y = 16
Z = 61.1

Z
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Commands:    Quit    Add    Change    Explain
   Select   Zoom   Display   Evaluate   Save

Y

Figure 3. A Screen of the Computer-Aided Design (CAD) Software in Which the Critic Is Embedded. 
The critic for the experiment was embedded in a shipboard equipment placement CAD package. The designer uses
the mouse to inspect existing equipment items on the design or to zoom in and place new pieces of equipment, such
as antennas, on the ship. Once he/she finalizes his/her design decisions and makes all the antenna placements,
he/she toggles the “evaluate” button to invoke the critic.



result of this set of simulations is a capability to
compute the topological surfaces of the elec-
tromagnetic fields and the impact of designs
on these fields. That is, these simulators offer
the ship designer the ability to find out that
the radios work best when the radar is off. 

However, simulations also fail to be fully
satisfying for design-testing purposes, as
already mentioned. In this domain, the elec-
tromagnetic field surrounding each spot on
the design is too complex to thoroughly and
accurately model. Further, the databases that
drive the simulators tend to have validity
problems. As a result, finalized antenna loca-
tions can often only be determined by walk-
ing the deck and superstructure of the ship.
This walk through the ship is done with a
hand-held oscilliscope to empirically locate
the minimal interference positions while other
systems are illuminated and exercised. Final-
ly, the designer finds himself/herself under-
trained in the electromagnetic specialty. He/she
regularly commits missing concept errors.

The goal of a critic here is to accumulate
constraint and violation heuristics that it can
use to help the designer avoid having to con-
sider and test antenna locations that are
clearly unacceptable. One could extend this
process to encompass many of the other roles
for critics that were mentioned previously.
Still, these heuristics alone should lead to cri-
tiques that improve the accuracy of early
draft designs, thus speeding the design pro-
cess. They should also reduce the designer’s
missing concept errors and avoid the poten-
tial for misconception errors.

The critic created to assist in this domain
and embedded in the CAD package is CLEER

(Zhou, Simkol, and Silverman 1989). The
input to CLEER is a ship design showing the
location of all objects, including the antenna
in question. Its algorithm uses spatial reason-
ing and checks all objects near the antenna
against rules or heuristic constraints that the
designer shouldn’t violate. Its output is a log
file of the violations and a list of the con-
straint compliances it finds for this antenna.
In all, the CLEER prototype contains about
four dozen constraints culled from a variety
of sources. These sources are readily available
to the designer. However, the designer fre-
quently overlooks these sources when racing
to meet design deadlines, probably because of
a confirmation bias that leads him/her to
seek only evidence that confirms the design
is complete and error free.

The user invokes CLEER by clicking a mouse
on a command icon that says “evaluate” (see
bottom of figure 3). The feedback is a scrol-
lable screen display of the log file of criticism

details. This CAD system is object oriented.
The designer can interrogate each object on
the drawing to find out its name, its location
and dimension information, and so on. The
designer can retrieve designs of existing ships
and inspect or alter them in this package.

The problem that most designers find chal-
lenging is the electromagnetic interference
that arises when they place antennas in a
wrong location. Warships have many types of
electronic systems (for example, radar, com-
munication, computers) that can interfere
with each other. For this reason, warships are
often called antenna farms. The designer must
add antennas to this crowded platform with
care to avoid the electromagnetic interference
problem. That is, he/she must avoid the
invisible but real effects of electronic fields on
components. For example, it is necessary to
keep antennas more than 10 feet away from
ordnance boxes. The antenna’s field can
cause ordnance to explode. They must also
keep other constraints in mind that aren’t
outright violations but are preferred practices.
For example, a good heuristic is to place all
receive antennas on the stern and all transmit
antennas on the bow.

CAD packages provide visualization sup-
port and permit the expression and commu-
nication of design ideas. However, they offer
little or no constraint-violation information.
Thus, in the example, the CAD package sup-
ports the designer in making parts place-
ments on the ship drawing. However, it gives
no feedback about poor locations when elec-
tromagnetic interference from other objects
will prevent an antenna from working. As
expected, CAD packages alone do little to
overcome the accident prevention and other
concurrent engineering problems that face
most design applications. 

To overcome these kinds of shortcomings,
most designers turn to numeric simulation—
so much so that CAD package vendors rou-
tinely include simulation tools in their library
of design aids. For example, Valid Engineer-
ing, a vendor of a very large-scale integrated
(VLSI) circuit CAD package also distributes a
range of thermal and other property simulators
(Yee 1989). Likewise, in the ship design domain,
one finds commercial packages such as OMNI-
SYS, a block diagram software for specifying
the waveforms that are input to each block of
the design; MICROWAVE SPICE, a circuit-level sim-
ulator that characterizes the electronic behav-
ior of each element of the design; LINE-CALC, a
simulator that computes transmission and
propagation losses; and LIBRA, a nonlinear fre-
quency simulator that computes the harmon-
ic imbalances between components. The end
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(violations) and praise (compliances) of the
antenna of interest. Figure 4 lists an example
output for a twin-whip transmit antenna
located at the position shown in figure 3. The
designer wrongly places the antenna within
10 feet of an ordnance object. He/she learns
why this placement is undesirable, giving the
designer insight into the source of his/her
error and a reason to fix it. Further, CLEER pro-
vides praise for the things the designer does
right (that is, constraints that are complied
with). The praise is an effort to reinforce good
design practice on the part of the user.

User Evaluation of the Prototype Critic 

The goal here is to evaluate a prototype to
find out if after-task criticism and praise
improve user satisfaction and performance.
We want to explore what seems to work or
not work. The method involves collecting
reactions from users, specifically, from four
supervisors of warship antenna-placement
designers. The supervisors happened to be
experts in the electromagnetic interference
domain. These supervisors used CLEER and
shared their reactions during four separate
sessions. The supervisors realized this effort
was a research investigation. They not only
shared reactions but also ideas about what
might or might not work for the designers in
their employ. They also provided feedback
about the constraints and heuristics in CLEER’s
knowledge bases.

Because the objective is to research features
that do and don’t work, the criteria for the
analysis is “any single complaint that a user
voices.” Most of the comments concerned
domain details about the constraints and
heuristics. These are of little general interest,
and we omit them here. Overall, the com-
ments were positive, and the supervisors
found the critic approach well suited to cuing
design experts. Still, several interesting com-
ments emerged. The following concerns were
voiced by all four users:

First, because there is a missing knowledge
characteristic of many users, the critic should
do more before-task tutoring and explaining
about why a given decision is unacceptable.
Don’t just tell the user he/she is wrong, or
he/she will get discouraged after several tries.

Second, the after-task debiasing is like a
frustrating game of 20 questions. The user
shouldn’t have to keep guessing different
designs until he/she happens on one that is
violation free. The system should have the
ability to colorize the parts of the ship that
are off limits. It should cue the designer
through direct interrogation of colorized
regions about why the part is off limits. It
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Figure 4. Log File of Criticism and Praise from a Sample Run of the 
Expert Antenna Critic. 

The critic spatially analyzes the designer’s antenna placement decisions against a
number of constraint rules that shouldn’t be violated. Any violations are dumped into
a log file for printing back to the screen. The log file also includes the satisfied con-
straints as a form of praise for the designer. The example shown here is for a twin-
whip antenna placed too close to an ordnance object.

The type of antenna:

Twin-whip (10-30 mHz) transmit HF antenna

Location: x = 459 y = 16 z - 61.1

Conclusion: This location is infeasible because it failed the fol-
lowing constraint(s)

Constraint: Placement of large, high power HF antennas on
deck at distances closer than 10 feet to ordnance will
affect performance of the weapon and performance of
antennas.

On this ship, “mk45modo-ordnance-object” was installed at “x =
491, y = 20, z =41”

However, this installation did pass the following constraint(s):

Constraint: Antennas should not be located closer than 1 foot
from other objects.

Constraint: Transmit antennas do not function well high off the
water especially if their frequencies are on the lower por-
tions of the HF band. Their radiation patterns begin to
split or scallop in the elevation plane.

Other Reasons:

• HF range communications antennas are too heavy 
or too large for mast mounting

• Induction of electromagnetic energy from the 
desired radiator into nearby structures causes 
them to radiate the signal and, in effect, become 
another part of the antenna system. At heights 
above 85 feet, HF antennas cannot use the hull as 
part of the system.

Constraint: No antenna can be placed 35 feet below the base
line.

Remark: This is the lowest level of the topside of this 
particular ship.

Constraint: HF antennas must be 50 feet away from other
receive antennas.

Reasons:

• Separation of transmit antennas from receive 
antennas is necessary to prevent overload of the 
receive antenna and generation of intermodulation 
products within the receive antennas.



Strategies for Criticism

The results of the past two years of criticism
research appear in Silverman (1992a, 1992b,
1991a, 1991b, 1990). What follows is a sum-
mary of two principles and several pieces of
guidance that have empirical validity. Also
included here is a synthesis and integration
of many important intelligent system design
touchstones known to be valuable in human-
computer collaboration in general. The items
in this subsection constitute a different
approach to the critiquing paradigm, one
that is more faithful to the idea of criticism as
a collaborative process. 

Three reasonable categories of criticism
strategy are as follows: 

First, influencers work before or, possibly,
during a specific subtask. They use incremen-
tal mode with heuristic reasoning and offer a
positive appeal to the user’s intelligence
before he/she commits a common error. 

Second, debiasers self-activate incremental-
ly (that is, right after each subtask) to see if
the user has committed an error and, if so, to
provide negative feedback. Because they are
telling the user he/she erred, it is inherently
negative feedback. 

Third, directors are procedures that assist a
user with the application of a cue rather than
appeal positively or negatively to his/her
intelligence for using it.

A critic generally includes only a few rules
or knowledge chunks and, thus, is narrow
and limited in scope. Decision networks of crit-
ics can compensate for this weakness; they
are a cluster of active critics that use several
influencing strategies (for example, hint,
show defaults and analogs, tutor) followed by
debiasers and directors. Debiasers and direc-
tors only appear if before-task critiquing fails
to cause the user to apply the cue of interest.
It is a decision network because there are
multiple, active critics for a given major type
of error, and the dialogue generation step
must decide which critics to invoke when. 

In addition to including one or more strate-
gies, a decision network of critics should also
exploit clarifiers. Clarifiers are techniques that
incorporate insight about human perception
and understanding to improve the delivery of
a strategy. Thus, for example, when a strategy
calls for presenting textual information to a
user, a clarifier might include organizing the
information hierarchically or through hyper-
text to hide what isn’t initially needed but
that might be probed after the initial criti-
cism is absorbed. Another example would
include the use of visualization aids such as
screen icons, direct work-item manipulation,
or colorization to make the intended point of

should also actively suggest good locations in
a prioritized order.

Third, the typical designer is unlikely to
absorb or even read praise information. Omit
this information.

Fourth, the prototype analogy module
would help users see how antennas are placed
on similar ships. This information should be
displayed before the users make a placement
decision on the current ship.

Discussion of Results

The prototype critic shows that the critiquing
paradigm holds some promise for DSEs, but
there are still shortcomings in the way it is
implemented. Many of CLEER’s features are
similar to the configuration of other critics
and to the conventional wisdom. For exam-
ple, CLEER uses passive, after-task debiasing
through batch log files of feedback. It is also
inattentive to the needs of the intermediate-
skilled practitioner. The results of this case
study raise serious questions about previously
held critic design beliefs. Hindsight is twenty-
twenty. We could not easily predict these
design flaws without building and evaluating
the CLEER prototype. Now that we know them,
let’s examine their implications more closely.

Next Steps and Further 
Research Needs 

The lesson learned from the experiment
described in the previous subsection is that
expert-critiquing theory offers little and,
sometimes, incorrect help to the critic builder
in deciding the parameters of the critic relative
to the task area. There is a major deficiency in
the conventional wisdom, leading to critics
that have less than optimal characteristics.
Grammar and style critic users increasingly
complain about the stupidity of their critics.
Continuing to field more critics without over-
coming these challenges will lead to widespread
disenchantment with the critiquing paradigm.

As a step toward correcting this deficiency,
Silverman (1990, 1991a, 1992a) has built
expert-critiquing systems for a variety of non-
design task areas with a mind toward empiri-
cally deriving a more robust theory of criticism.
To date, he has derived a set of guiding prin-
ciples and added lessons learned that speed
the building of useful and user-acceptable
critics. These guiding elements are briefly
described in Strategies for Criticism, after
which we discuss their implications for the
DSE domain. A finished theory of criticism
with true predictive value for guiding critic
builders is still a topic for future research, as
addressed in Further Research Needs.
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the strategy with even less textual material.
The use of these and other clarifiers will
improve the usability of the critics and the
human factors of the strategies. 

Finally, a decision network can make good
use of reinforcers for those cases where the
user misses the point of a given critic strategy.
Reinforcers give a network a degree of endurance
and perseverance that can be useful in
instances where the first several strategies fail
to remove a given bias or error from the user’s
behavior. Three common reinforcers are as
follows: (1) Repetition restates the same criti-
cism in a different way one or more times to
help reach distracted or differently oriented
users. (2) Persuasion, including cajoling by
“carrot and stick” methods, can help change
a recalcitrant user’s perspective. Often, this
change can be accomplished by presenting
the cause of an error to motivate understand-
ing of the criticism followed by the effect to
show the user what he/she will encounter if
an error goes unchanged. (3) View argumenta-
tion, in the form of textual explanations,
explains why a given criticism is important.
Often, the argumentation takes the form of
presenting alternative viewpoints of the same
problem. 

In most of the critics Silverman designed,
the error or missed cue is first prevented by
an influencer. If this step fails, the error or
missed cue is addressed by a debiaser as soon
as possible, while the subtask is still fresh in
the user’s mind. Directors are reserved for
helping the user get through overly compli-
cated cue use sequences. Through the use of
various combinations of influencers, debi-
asers, and directors, a reasonable critic can
always be configured.

To summarize this discussion, it is vital that
the critic builder not work in a vacuum. The
builder must be aware of a library full of 
past critic results, critic theory, and relevant
literature. 

Principle 1: The critic builder should draw
from a library of functions to create a decision
network of active influencer, debiaser, and
director strategies.

The function library should offer multiple
corrective strategies relevant to the design
domain. One can deploy these strategies in a
partially redundant fashion to blanket the set
of likely causes of unwanted cue use and nor-
mative cue nonuse. The following alternative
strategies illustrate how the critics can be the
overarching framework for DSE.

Influencer strategies help prevent errors.
These strategies include hinting, cue showing,
and attention focusing to minimize potential
biases; showing design defaults and analogs

to provide good starting anchors; explaining
engineering principles, examples, and refer-
ences (that is, tutoring) to help anchoring
and adjusting processes; repeating, often in
different form, to be sure points get through;
and visualizing the total direction that the
task should take.

Debiaser strategies help correct a bias. These
strategies include identifying normative cue
use failure modes using any or all of the avail-
able heuristic and quantitative or qualitative
modeling tools; explaining effect and cause 
to try to elevate the designer’s awareness;
attempting repair actions, such as specializ-
ing, generalizing, analogizing, substituting,
adjusting, and attention refocusing to try to
move the subject to a more productive path-
way; using reinforcers, such as repetition, per-
suasion, or view argumentation; and using
visual feedback, such as colorization and
highlighting of imperfections in the task
work artifact.

Directors are task-, cue-, and domain-specif-
ic procedures. They help users perform a task.
One finds them inside the designs of reusable
critics. For example, directors might include
top-down assistants that perform knowledge
acquisition, model setup, and other subtasks.

This listing includes many strategies, and
few DSE users will need this much criticism in
one session. One must craft triggers, so redun-
dant strategies only interrupt the user if earli-
er strategies fail to remove the error. This
approach serves to preserve the collaborative
nature of the relationship, leading to a useful
and conservative approach. Redundancy (and
repetition) has a chance to operate on poten-
tially stubborn errors.

Criticism Is a Two-Way Process. The
effective critic needs a decision network of
strategies because criticism is a process, not a
one-time event. Criticism should include a
true exchange of ideas and a search for truth.
The recipient’s response is another subjective
viewpoint, not just a defense. It merits con-
sideration by the critic.

Properly designed networks can accommo-
date alternative responses, corrections to criti-
cisms, multiple reactions, and individual
differences. In productive criticism, a joint
cognitive relationship occurs, and collabora-
tion processes prevail. Both the man and the
machine contribute information that leads to
better results, implying principle 2:

Principle 2: To promote effective criticism,
there must be a mutual, two-way exchange of
ideas. The critic must be flexible and adaptive.

To be flexible, the critic must back away
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A Revised Engineering Design Critic

Let us now consider how a CAD environment
might exploit principles 1 and 2. This revi-
sion exploits and extends ideas pioneered by
Fischer (1989). Specifically, we describe the
critic’s user interface, shown in figure 5. The
antennas are for the specific ship shown in
the two large windows toward the upper
right. The designer scrolls through the upper
left window to find the type of antenna to
place on the ship. This window is a library of
parts he/she can drag to the two ship views.
He/she then uses the buttons across the base
of the plan-view window to check what is
already on the ship and find the location
he/she desires. These three windows depict a
classical style of direct-manipulation interface
and capability for a CAD system. The capabil-
ity of the system is primarily to support the
representation of the drawing.

Critics introduce a layer of intelligence into
the design environment because they cue the
user to the violations and preferred-practice
errors he/she commits. The goal with these
cues is to be as nonintrusive and as helpful as
possible. The direct-manipulation–style inter-
face is an attractive criticism-delivery medium.
Less skilled designers need textual criticisms
as well. That is, principles 1 and 2 apply. The
two types of influencers in figure 5 capture
these concerns, as explained in the figure
caption. 

The colorized locations and analog pictures
serve to subtly cue the more well-skilled
designers. The analog influencers appear to
the left side because English-speaking people
read left to right. Users tend to see these
influencers before they begin the task in the
two windows to the right. The “show
analogs” button allows the user to scroll the
library holdings. The user clicks “update
analogs” after a successful session to add the
result to the library of analogs. The less
skilled designers can inspect explanatory note
cards by clicking the “check equipment” and
“analog ?” buttons. Also, well-skilled design-
ers click the “analog ?” button to read why a
given location was chosen, helping them
decide if the location should be reused in the
current ship. Novices, in turn, won’t know
how to transform the analogous location to
the current ship, but the debiasers can help
ease them through the process. 

The debiasers appear in the lowest window
of the screen. This window displays during-
and after-placement criticisms. These criti-
cisms concern what is either a violation or
just a suboptimization (preferred practice
ignored). It is not essential for the user to

from its criticisms; persistently try alternative
approaches; and, at appropriate times, accept
that the user is correct. Decision networks are
a move toward this flexibility. The critic also
needs to be user oriented, able to say the
right thing at the right time. The first step
toward user-oriented criticism involves giving
the critic simple user model techniques,
including toggle switches the user can set to
alter the type of criticism and simple capabili-
ties to provide dialogues appropriate to differ-
ent user types and skill levels. 

To truly identify which, if any, of the errors
in table 1 exist, it would be desirable to have
a full-blown cognitive model of the user’s
intentions. Still, a simple behaviorist user model
can suffice that alters its surface behavior in
response to user input. For example, a good
spelling checker learns new words that the
user knows but that the program doesn’t.
Usually, the user only pushes a “learn word”
button for the after-task debiaser to add a for-
eign word to its dictionary and go to the next
spelling error. Over time, the critic becomes
suited to the user, supporting the adaptivity
feature of the critic.

To be adaptive, the critic must grow and
learn from interacting with a given user. The
more it is used, the more useful the critic
should become. To achieve this goal, the
critic needs a dynamic memory. It must
remember new solutions the user gives it, so
it won’t repeat past errors. A spelling critic
that learns new words or that, at least, learns
to stop treating new words as errors is a trivial
example of adaptiveness. A more powerful
solution lies in the analogy strategy of the
decision network. The analogy base grows as
the user adds more successful designs. The
effect of this and other adaptivity features is
that the user slowly tailors the critic to
his/her own needs the more he/she uses it. As
this tailoring occurs, the collaboration grows.

The critic that can adapt itself in this fash-
ion is not overly intelligent. It uses memo-
rization rather than inductive-learning
processes. However, this memorization cap-
tures the essence of the idea that criticism is a
mutual-growth process. The user grows to like
the debiasers even more. No proof is neces-
sary for any reader who uses one of the better
spelling critics with his/her word processor.

In this fashion, the critic can serve as the
“corporate memory” for an organization. As
the organization’s members come, learn, per-
form, and leave a given job, the critic remains
behind. The adaptive critic will manage the
corporate memory as an asset. It will connect
the current user to a string of vital experi-
ences that he/she has yet to have personally.
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incorporate these latter cues. The user can
adapt the debiasers to his/her perspective in
four ways. The user can click “next criticism”
to advance past a given problem. The user
can click “ignore class” so that this problem
class won’t be brought up again during the
rest of this session. The user can click “learn
preference,” and the user model updates the

file of what types of critics to show to this
user. Finally, the designer might know some-
thing about this ship, this class of ships, or
the current captain of this ship that can lead
to an added violation or practice concern.
The user can click “add constraint” to update
the critic’s knowledge base.

By now, the reader should see more fully
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Figure 5. Multistrategy, Mixed-Initiative Critiquing Interface for a 
Computer-Aided Design Environment. 

The designer selects an antenna by scrolling in the upper-left window. He/she drags the antenna of interest to the two
ship windows. With the aid of the commands across the base of the plan-view window, he/she places the antenna on
the ship. Influencers, in the form of colorizations of the ship, show constraint violations and suboptimal antenna
placements before the user selects these locations. Another influencer is the catalog of analogs the user can inspect. By
clicking “analog ?” the user can see a note card indicating the precise location and the rationale for this choice. A
stack of debiaser note cards, in turn, appears at the bottom of the screen when the user attempts to place the anten-
na in a colored area. The user can tell the critic to “ignore class” of error for the duration of this session or “learn
preference” of designer for violating this cue in all sessions. Also, the user can obtain help by clicking on the “?”
button or add a constraint the critic is unaware of for this ship. Finally, when the user is done, he/she can click on
“update analogs” to add the new case to the library of analogs.
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plus principles 1 and 2, reflect a different sit-
uation. In Silverman (1991a), incremental,
before-task knowledge critics allow novices to
almost double their performance. Further,
incremental, multiple-strategy (before- and
after-task) critic networks lead competent
users to near-perfect results. Trace files indi-
cate only the before-task knowledge that crit-
ics activate. User reactions suggest they
welcome the “interference” of the before-task
critics. Also, in the engineering design
domain, waiting until after an error to inject
criticism leads to frustration and poor accep-
tance by the user community (see Discussion
of Results). The point appears to be that before-
task knowledge critics, if done as hierarchical
text and in a visual fashion, do not bother
experts. In addition, they assist experts by
reducing their misconceptions. However, an
expanded role also appears feasible. Critics
that can assist a broad range of skill levels
also seem prudent for the design domain
where expertise is nonuniformly distributed
and where missing concept errors also arise. 

Criticism should be textual and visual:
Direct-manipulation interfaces are potentially
powerful and attractive. Critic builders
should use them to deliver criticism in lieu of
text wherever possible. However, this
approach is not used by today’s engineering
design critics. Engineering design drawings
are conducive to direct manipulation and
visual criticism. For example, in the initial
version of the ship design critic, criticism was
textual and referred to the ship remotely. The
revised critic used direct manipulation of the
design to unobtrusively communicate criti-
cism in the work artifact. Colorization of the
ship can reveal violations without the need
for text. Also, the display of analogs is anoth-
er nontextual mode of providing before-task
advice. In short, engineering applications
have no excuse for perpetuating antiquated,
text-only critiquing media. At a minimum, a
mix of metaphor and textual initiatives usu-
ally leads to the most effective results. 

User models are beneficial: At a
minimum, a critic should include a behaviorist
user model with a series of databases. These
databases cover the user behavior history and
preferences. This model also holds several
simplistic dialogue and network toggle
switches or triggers that shift the interaction
from novice to intermediate to expert mode
and back depending on what seems to work
for a particular user. There might be a short
inventory of demographic and skill-level
questions that new users should answer.
However, most of the user model’s inferences
depend on what seems to work over time

how to add visual criticism, decision networks,
user flexibility, and adaptive memory process-
es to a critic program. Features such as these
make the user more comfortable with the
software the more he/she uses it. Also, the
more the software is used, the smarter and
more personalized it gets. This ability can be
dangerous if an ineffective user adds erroneous
designs to the analog base or incorrect con-
straints to the critic’s knowledge base. Howev-
er, judicious use of passwords to, and supervision
of, the master knowledge and analog bases
can minimize such difficulties. Overall, prin-
ciple 2 leads to usability enhancement. 

Further Research Needs

The revised critic described in the previous
subsection is only a hypothesized improve-
ment. Silverman has yet to conduct empirical
studies of user reactions to, and productivity
improvements from, its use. Still, based on
valid principles of the criticism paradigm, this
critic appears to be more promising than that
described earlier. Future research is needed to
bear this fact out and integrate the critic and
the three DSE layers. For example, the revised
critic does not currently access the numeric
simulators or databases of the domain.

In engineering design, many disciplines and
perspectives need critics. In naval ship design,
the electromagnetic interference problem is
only one of many that critics could help with.
Electromagnetic interference is also probably
the most important problem. Lives can be
lost in battle if this problem is neglected. Once
the electromagnetic interference critics are
complete, one can start work on the others. In
the long term, it is likely that whole divisions
of various design firms will exist only to build
and maintain a broad spectrum of ship design
critics. The same future is likely for VLSI
design firms, parts design firms, and so on. 

Several aspects of conventional wisdom in
building critics lead to much productive
results in first-generation critic applications.
To further advance the state of the art and
practice, some of this conventional wisdom
must be reconsidered, as this article has
begun to do.

Don’t interrupt the expert until he/she
has erred: An important piece of convention-
al wisdom from the classical critic systems is
to let the expert solve the problem on his/her
own until he/she errs because interruptions
are bothersome. Classical critic systems use
batch, passive, after-task critiquing. The sup-
port for this belief is usually the builder’s
statement that his/her users prefer this
approach. In contrast, the user results and
reactions reported in Silverman’s research,
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with each type of user: For example, what
reusable strategies work in which generic
tasks for what class of user? Which bias trig-
gers seem most accurate? The machine can
observe its users to collect much of these
data. Builders can analyze such data to learn
more about user differences. As they learn
more, they can add more toggle switches to
the critic design. In this fashion, the critic
will gradually become more user sensitive,
and we learn more about collaboration
theory. Behaviorist user models are not hard
to add to the critic, as our case study shows.
They significantly improve the critic’s accep-
tance. However, no critics prior to 1990
include user model features. It is time to
change this practice.

Analogy for positive criticism and adap-
tivity: Analogy to prior concrete experience is
one of the most commonly encountered forms
of expert intuition in engineering design.
Engineers analogize almost as often as they
breathe. However, the critiquing field has
overlooked the role that analogy can play as
both influencer and adaptivity aid.

Analogical-based reasoning systems are
now popular and successful. Many successful,
stand-alone analogical, or case-based, reason-
ing systems will ultimately be built. Critic
builders should not overlook the fruitful role
that analogical reasoning can play when inte-
grated as part of multistrategy, criticism-based
systems. For example, in the criticism-based,
problem-solving approach, the showing of
analogs and defaults (a form of analogical rea-
soning comparable to extracting a model of
norms from a cluster of analogs) extends the
capabilities and robustness of the decision
networks of critics. It also dynamically
remembers the successful designs from past
sessions. The analogical reasoning module
can use this knowledge to offer the user a
critic that becomes more domain knowledge-
able the more that it is used. The critics, in
turn, act to reduce analogical transfer and
transformation errors by the human reasoner.
The analogical and criticism-based approach-
es have much to offer each other. The same is
true of criticism and other knowledge-acquisi-
tion techniques.

Concluding Remarks
First-generation expert-critiquing systems
were powerful in their ability to flexibly react
to a user-proposed solution in a batch, pas-
sive, after-task mode. As more results become
available and as more precise evaluations
occur, it becomes clear that alternative critic
approaches have an equally important role.

Based on the idea that critics should help the
expert to use more cues, some of these alter-
native approaches are beginning to focus on
the following points: First, critics can help the
expert before he/she psychologically commits
to an erroneous solution. For example, one
can include before-task influencers and situat-
ed tutors in a decision network that also con-
tains batch, after-task critics. This approach is
particularly important in engineering design
applications where many of the errors result
from missing knowledge (non-expert–style
errors). Second, critics in the design domain
already have a pictorial representation—the
CAD drawing—that they can and must
exploit. Delivering criticism visually and by
direct manipulation avoids the problems of
textual criticism and remote reference to the
artifact. Third, there is the prospect of tailor-
ing the critic to various characteristics of the
human partner by integrating limited degrees
of user modeling into the critic’s architecture
and giving the critic a dynamic memory that
becomes more useful the more that it is used.

Engineering design enterprises are currently
seeking smart extensions for CAD environ-
ments. Knowledge-rich critics are a starting
place for filling this need. They reduce human
error and increase the productivity of compe-
tent designers. Critics contribute to the devel-
opment of better products. By building critics
properly, they will become a successful con-
tributor to smart CAD environments. They
might even serve as the integrating paradigm
for the entire DSE knowledge-based layer.
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