Robot Planning

  • Drew McDermott


Research on planning for robots is in such a state of flux that there is disagreement about what planning is and whether it is necessary. We can take planning to be the optimization and debugging of a robot's program by reasoning about possible courses of execution. It is necessary to the extent that fragments of robot programs are combined at run time. There are several strands of research in the field; I survey six: (1) attempts to avoid planning; (2) the design of flexible plan notations; (3) theories of time-constrained planning; (4) planning by projecting and repairing faulty plans; (5) motion planning; and (6) the learning of optimal behaviors from reinforcements. More research is needed on formal semantics for robot plans. However, we are already beginning to see how to mesh plan execution with plan generation and learning.
How to Cite
McDermott, D. (1992). Robot Planning. AI Magazine, 13(2), 55.