
■ Recent years have seen a resurgence of interest in
the use of metacognition in intelligent systems.
This article is part of a small section meant to give
interested researchers an overview and sampling of
the kinds of work currently being pursued in this
broad area. The current article offers a review of
recent research in two main topic areas: the moni-
toring and control of reasoning (metareasoning)
and the monitoring and control of learning (met-
alearning). 

What Is Metacognition 
in Computation?

Rosie (the robot maid from the TV show The
Jetsons) spends her days cooking, cleaning,
ironing, and attending to the usual household
tasks of late 21st century life. Because of a bug
in one of her memory chips, however, she
almost always forgets to buy dog food when
she goes out. She has an adequate recovery
plan for this: she simply feeds Astro some of
the Jetson’s dinner. But 21st century human
food is expensive, so this strategy is wasteful.
Realizing this, and recognizing that she has for-
gotten several times, Rosie adopts a special
strategy to help her remember: she sticks the
spare dog collar in her apron, where she will
see it next time she is at the store. Rosie’s spe-

cial strategy is an instance of metacognition:
Rosie monitored her performance in this cog-
nitive task (remembering the grocery list), rec-
ognized a deficiency, and applied knowledge of
her own operation (knowing she would see the
collar in her apron) to take specific steps to
address the deficiency. 

Later that same day, Rosie consults her list of
things to do. One of them, making the arrange-
ments for the Jetsons’ vacation, is going to
involve a great deal of computationally inten-
sive planning on her part, and Rosie’s processor
is old and slow. Knowing that doing this plan-
ning will take resources away from other tasks,
and interfere with the other things she has to
do that day, she schedules the computational-
ly intensive task for the late evening, when her
overall workload is less. This, too, is an
instance of metacognition: knowing about her
own capacities and scheduling tasks to make
the best use of her limited resources. Essential-
ly, metacognition is any such strategy that
involves the monitoring, modeling, and con-
trol of cognition. 

To put the matter more generally and for-
mally, imagine two components, X and Y
(where X and Y could be the same), related in
such a way that state information flows from Y
to X, and control information flows from X to
Y. Component X is in a monitoring and con-
trol relationship with component Y, and when
Y is a cognitive component, we call this rela-
tionship metacognitive monitoring and control.
Put formally, then, the research question for
the subject of metacognition in computation
is: what are the sets {X, Y, S, E}—where Y is a
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cognitive component of a computational sys-
tem S, and E is its environment—such that
having some X in such a relationship with Y
provides benefits to the system (and what are
these benefits)? 

Recent years have seen a resurgence of inter-
est in the topic of metacognition in computa-
tion. Metacognitive architectures and
approaches have found application in diverse
areas, from computer security (Caleiro, Vigan,
and Basin, 2005; Welch and Stroud 2002;
Kennedy 2003; Garfinkel and Rosenblum
2003) to cognitive modeling—including the
modeling of decision making (Cohen and
Thompson 2005, Oehlmann, 2003), common-
sense psychology (Hobbs and Gordon 2005,
Swanson and Gordon, 2005), the relations
between emotion and judgement (Hudlicka
2005), and rhetorical force (Lundström, Ham-
felt, and Nilsson 2005)—to computer gaming
applications such as adversary generation
(Zachary and Le Mentec 2000), to human-com-
puter interaction (Kim 2005) and automated
tutoring (Muldner and Conati 2005). Perhaps
the most widely publicized metacognitive ini-
tiative has been IBM’s autonomic computing
project (Ganek and Corbi 2003), intended to
use self-monitoring to improve the ability to
build and manage both small- and large-scale
computer systems. Other work on system man-
ageability includes the use of model-based pro-
gramming approaches to build long-lived, self-
repairing autonomous systems (Williams et al.
2004); the development of techniques for
leveraging explicit representations of system
constraints to allow systems to self-manage
incremental adaptation to changing task
requirements (Murdock 2001); and the use of
reflection to enhance the configurability of
middleware objects (Costa 2001, Sullivan
2001). Finally, in the world of sponsored
research, DARPA’s recent Cognitive Informa-
tion Processing Technology initiative fore-
grounds reflection (along with reaction and
deliberation) as one of the three pillars
required for flexible, robust AI systems.

This article, combined with two following
articles, is meant to give interested researchers
a sampling of the kinds of work currently being
pursued in this area. The article by Stuart
Shapiro and colleagues provides an overview of
the SNePS knowledge representation and rea-
soning formalism, highlighting its metacogni-
tive aspects, as well as its applications to such
projects as the autonomous robot Cassie, while
the article by Michael Cox discusses the
requirements for producing a perpetual, self-
aware cognitive agent that can continuously
operate with independence. Among the central

requirements for such an agent, Cox argues, is
the capacity for introspection and self-
improvement.

The current article rounds out the special
section by offering a review of recent research
in two main topic areas: the monitoring and
control of reasoning (metareasoning) and the
monitoring and control of learning (met-
alearning) (figure 1). The section on metarea-
soning focuses primarily on work published
after 2000, partly as a (somewhat arbitrary)
method for narrowing the task and partly
because earlier work in this area has been ably
summarized by Michael Cox (2005) and Stefa-
nia Costantini (2002).

Work on Metareasoning
Work on metareasoning falls (albeit not neatly)
into two main areas: (1) scheduling and con-
trol of deliberation, and (2) generating and
using higher-order knowledge about (or
abstractions of) reasoning processes. The first
area is of course closely related to the larger
area of the control of computation, and it is to
this that we turn first.

Control of Computation
Perhaps the most basic (but not for that reason
the most easily solved!) question in the control
of computation is the question of when to stop
a given computational process. This problem
can be especially difficult when the expected
run time of the process is not known, as in the
case of incomplete decision algorithms. Sand-
holm (2003) tackles this problem by develop-
ing a general decision-theoretic method for
optimally terminating such algorithms. A key
feature of the solution is a model of the algo-
rithm’s run-time distribution, the prior proba-
bility of a given answer (yes or no), and the val-
ue that different probability estimates for each
answer would provide to the user at different
times (based on the assumption that the user
will act based on the probability estimates
accorded each answer).

A slightly different aspect of this stopping
problem is addessed by Jingfang Zheng and
Michael Horsch (2005). As the authors correctly
note, constraint optimization problems have
two aspects that need to be balanced: finding the
best solution, and knowing (that is, proving) one
has found the best solution. To achieve the lat-
ter can take some time, often even longer than
finding the solution itself. In fact, if there are
resource bounds, a proof of optimality may not
be possible under the constraints. Thus, the sys-
tem (or the designer) faces a trade-off between
(known) solution quality and time cost. Zheng
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and Horsch develop and evaluate a decision-
theoretic metareasoner that explicitly represents
the costs and benefits of computation and uses
this information to control a constraint-opti-
mization problem solver. They demonstrate that
by choosing actions with the estimated maxi-
mal expected utility, the metareasoner can find
a stopping point with a good trade-off between
the solution quality and time cost.

Perhaps the best-known work dealing with
the control of deliberation under resource con-
straints is related to the theory of bounded
optimality developed by Stuart Russell, Eric
Horvitz, and others (see Russell [2002] for a
recent overview). Bounded optimality is an
approach to the design of agents with “ratio-
nal” (that is, maximally beneficial) delibera-
tion policies, given assumptions about resource
constraints and the sorts of problems the
agents will face. More precisely, bounded opti-
mality is a formally defined characteristic of
the agent that the designer attempts to
achieve. The approach explicitly shifts the met-
alevel control task faced by the agent—decid-
ing when to deliberate and when to stop—to
the system designer, who implements a set of
deliberation policies that are provably optimal
over some range of assumed constraints. This
can be a good strategy when one has reason to
believe the designer to have better knowledge
of the task characteristics and system con-
straints than does the agent itself, but in cases

where the environment or agent can change in
unpredicted or even unpredictable ways, there
is some reason to return this responsibility to
the agent operating in real time.

One project along these latter lines is pre-
sented by Martijn Schut and Michael
Wooldridge (2001), who integrate a belief
desire intention (BDI) architecture with the
deliberation scheduling approaches of Stuart
Russell and Eric Wefald (1991) such that the
agent can dynamically choose a policy for
intention reconsideration based on local fac-
tors. Schut and Wooldridge demonstrate
improved performance in dynamic and open
environments over agents with deliberation
policies fixed at design time.

Similarly, Robert Goldman, David Musliner,
and Kurt Krebsbach (2003) address the prob-
lem of deliberation scheduling in real-time
intelligent control situations with hard dead-
lines, where time spent scheduling deliberation
must be carefully controlled because of strict
time constraints. A key requirement of the sce-
narios they discuss is that the deliberation poli-
cies must be flexible and under the control of
the agent, because unpredictable variations in
the time needed for each phase of a complex
operation (for example, an unmanned aircraft
flying a surveillance mission) can change the
time available for other aspects of the opera-
tion, including the time available for various
computations and adaptations. Their paper
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addresses one aspect of this problem by devel-
oping simplified Markov decision process mod-
els that minimize the time cost of deliberation
scheduling. In related work, Vincent Cicirello
(2003) shows that generating explicit models
of solution quality combined with online self-
analysis of performance can allow a system to
generate effective search control mechanisms.

Any-Time Algorithms 
and Continual Computation
Much of the recent work in the monitoring
and control of deliberation has focused on the
related concepts of any-time algorithms and
continual computation, each of which grew
out of different aspects of earlier work on
bounded rationality, or optimal computation
under constraints. 

An any-time algorithm is one designed to
generate solutions of continually increasing
quality, such that whenever it is terminated it
will produce the best currently available solu-
tion, given its time constraints. The question of
interest here is what sorts of monitoring and
control of any-time algorithms can enhance
their performance. 

Continual computation, in contrast, address-
es the issue not of finding the best (boundedly
optimal) use of time in solving a given problem,
but the best use of idle computational resources
between bouts of problem solving. This
approach broadens the definition of a “prob-
lem” to include not just individual instances,
but the class of challenges that a given compu-
tational system is expected to face over its life-
time. The metareasoning challenge here is to
anticipate future needs and use idle time to pre-
pare proactively for these expected problems.

Turning first to the monitoring and control of
any-time algorithms, we observe that, given the
basic character of these algorithms, the central
(and in some ways, the only) control problem is
determining when to terminate the algorithm:
when is the best trade-off between resource use
and solution quality achieved? If the rate of
increase in solution quality is reliable and
known, then this problem can be easily solved;
these conditions are, however, rarely met.

Eric Hansen and Shlomo Zilberstein (2001)
offer a comprehensive framework for ap -
proaching the issue of monitoring and control
of any-time algorithms. They formalize the
metalevel control problem as a sequential deci-
sion problem that can be solved by dynamic
programming. Their approach takes into
account factors such as the quality of the avail-
able solution, the prospect for further improve-
ment in solution quality, the current time, the
cost of delay in action, the current state of the

environment, and the prospect for further
change in the environment.

One interesting aspect of this general prob-
lem is addressed in detail by Lev Finkelstein
and Shaul Markovitch (2001). If we assume
that a given any-time algorithm can terminate
as soon as it generates a solution meeting some
threshold criterion then, clearly, the sooner it
terminates after reaching that threshold, the
more efficient will be its use of resources. How-
ever, because monitoring the progress of an
algorithm itself consumes resources, continual,
or even very frequent, monitoring could great-
ly reduce the overall efficiency of the process.
Finkelstein and Markovitch tackle this issue,
and present an offline solution to the problem
of generating optimal monitoring schedules
for any-time processes.

Turning our attention to continual compu-
tation, Eric Horvitz (2001) argues for a shift in
focus from efficiently dealing with individual
problems as they arise, to thinking about the
optimal use of resources over the entire com-
putational lifetime of a device. Horvitz suggests
that systems should be designed to generate
and evaluate information about the likelihood
of future problem instances, ranging from
detailed probability distributions to more qual-
itative orderings by likelihood, and implement
computational resource allocation policies that
can guide the ideal expenditure of idle time. He
discusses various models of system use, derives
optimal idle-time allocation policies for these
models, and illustrates their utility with practi-
cal examples such as precaching media content
based on predicted user behaviors while web-
surfing.

In a variation on the issue of deliberation
control, Claudia Goldman and Shlomo Zilber-
stein (2003) present a method for generating
an optimal policy for information sharing
between distributed decision makers, where
these decision makers can be autonomous
agents or individual computational processes
in a single system. This extends the problem of
deliberation scheduling to a multiagent con-
text, where not just the cost of deliberation,
but also the cost and risks of information trans-
fer must be considered. Reinhard Stolle, Apollo
Hogan, and Elizabeth Bradley (2005) also dis-
cuss an approach to this more general problem.
Their solution involves a declarative represen-
tation of the state and operations of the dis-
tributed system that can be used to control the
system in real time. 

Using Metarepresentations 
in Reasoning
There is also a wealth of work exploring the

Articles

10 AI MAGAZINE



second area of metareasoning research, of try-
ing to gather and represent information about
the object-level reasoner or reasoning process,
and using this information to improve per-
formance. Most of this work falls into the cate-
gory of logic-based AI and is aimed at improv-
ing the performance (speed, efficiency,
expressivity, contradiction tolerance, and so
on) of theorem provers.

For instance, Konstantine Arkoudas and
Selmer Bringsjord’s (2004) work in multiagent
epistemic logics demonstrates that explicit
metareasoning—reasoning that takes the epis-
temic logic as its object—can facilitate theorem
proving in the object-level language, in part
because it is possible to take advantage of high-
er-order structures and quantify over elements
of the object-level language, thereby signifi-
cantly enhancing efficiency.

A different benefit of metareasoning is
emphasized by recent work on active logic,
which suggests that a reasoning system
equipped with the ability to represent aspects
of its own state (such as the fact that the
knowledge base contains a contradiction), as
well as the ability to finely control inference
based on such information (preventing further
inference with the contradictands), is well suit-
ed to reliable operation in dynamic, real-world
situations where both expressivity and contra-
diction tolerance are at a premium (Purang
2001).

Michael Anderson and Donald Perlis (2005a)
extend this work on the importance of self-
monitoring and self-control in logic-based sys-
tems to the problem of intelligent system
design in general. They introduce the
“metacognitive loop” (MCL), a capacity for
self-monitoring and self-guided learning based
on the conviction that artificial agents should
be able to notice when something is amiss,
assess the anomaly, and guide a solution into
place. They argue that metacognitive skills are
the key to robust and error-tolerant systems,
outline a general architecture and approach to
building such systems, and discuss some exam-
ples of implemented systems for which adding
an MCL component improves performance.
They show, for instance, that even simple
metacognitive monitoring and control compo-
nents can improve the learning speed of rein-
forcement learners in changing environments
(Anderson et al. 2006), and that metareasoning
and metalinguistic ability can improve the
ability of natural-language human-computer
interfaces to accurately interpret users’ inten-
tions, and to recover from miscommunication
failures (Josyula 2005).

In addition to using representations of

object-level reasoning to control and change
those object-level processes, one can also use
this technique to enhance their expressivity.
Jonas Barklund, Pierangelo Dell’Acqua, Stefa-
nia Costantini, and Gaetano Lanzarone (2000)
discuss the use of logic schema to capture basic
properties of the domain represented in an
object-level language. This results in a met-
alevel abstraction of the object-level domain
knowledge, which allows for greater expressiv-
ity and increased inferential power in the sys-
tem as a whole.

The natural complement to the effort to
build metacognitive systems is the necessity to
test those systems. Scott Wallace, for instance,
is building reusable frameworks for validating
the behavior of self-monitoring agents (Wal-
lace 2005). In this area the ongoing National
Institute of Standards and Technology (NIST)
workshop series Performance Metrics for Intel-
ligent Systems (Messina and Meystel 2004)
deserves special mention, although the evalua-
tion techniques developed and discussed are of
course not restricted to only the evaluation of
metacognitive systems. 

As should be clear by now, most of the work
in computational metareasoning is directed to
practical ends. Nevertheless, there are still
some theoretical issues that draw researchers’
attention. For example, Vincent Conitzer and
Tuomas Sandholm (2003) point out that while
there is a wealth of results for the complexity of
basic reasoning strategies, there has been little
similar work for metareasoning. Thus, they
present an analysis of some basic metareason-
ing strategies, and the results should be some-
what sobering for researchers enamored with
metareasoning as a computational strategy.
They find, for instance, that the problem of
allocating deliberation time across any-time
algorithms running on different problem
instances is nondeterministic polynomial
(NP) complete. The problem of dynamically
allocating deliberation or information-gather-
ing resources across multiple possible actions is
shown to be NP-hard, even when evaluating
each individual action is extremely simple.
And finally they show that the problem of
dynamically choosing a limited number of
deliberation or information-gathering actions
to disambiguate the state of the world is NP-
hard under a natural restriction, and PSPACE-
hard in general.

Tackling a different set of theoretical issues,
Thomas Bolander (2003) lays out some of the
problems inherent in logical reasoning with
self-reference. In particular, he argues for the
importance of (and demonstrates some meth-
ods for) avoiding certain paradoxes of self-ref-
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erence, such as in the well-known example:
“This sentence is false.” In fact, the mysteries of
self-reference and self-awareness continue to
draw a great deal of attention from researchers
in computer science. Len Schubert (2005) out-
lines some basic enhancements to typical
knowledge representation and reasoning
schemas that will be required if they are to be
able to support self-knowledge, and Melanie
Mitchell (2005) asks how self-representation
and self-control should even be conceived in
the case of distributed and decentralized sys-
tems, like the human brain “consisting of bil-
lions of cells with no central control.” She
draws some inspiration from decentralized bio-
logical systems like the immune system to help
answer this question. Concerns about self-rep-
resentation lead naturally to questions about
self-consciousness, and while this topic is too
large and diverse to be discussed in this con-
text, we mention Holland (2003) and Ander-
son and Perlis (2005b) as computationally
grounded starting places for researchers inter-
ested in this topic.

Work on Metalearning
Despite the fact that the machine-learning
community, along with others such as statistics
and data mining, has developed a wide array of
“computer programs that automatically
improve with experience” (Mitchell 1997),
much of the burden of applying these pro-
grams falls on humans. Given a problem for
which machine learning is an appropriate solu-
tion, one must select a learning algorithm, set
values of parameters required by the algorithm,
choose a set of features thought to be relevant
in the domain, gather data, run the algorithm,
evaluate the results, and, often, revisit some of
the decisions made earlier and iterate. There
are many definitions of metalearning, but,
informally, most definitions involve automat-
ing one or more of these decisions.

The decisions made by humans when solv-
ing problems with machine learning impose a
bias, a preference for some hypotheses over
others. David Hume’s conclusion that there is
no rational basis for induction (Hume 1740),
David Wolpert’s No Free Lunch (NFL) theorems
(Wolpert and Macready 1995; Wolpert 2001),
and Cullen Schaffer’s Law of Conservation for
Generalization Performance (LCGP) (Schaffer
1994) all point to the fact that successful gen-
eralization requires an appropriate bias
(Mitchell 1991). The terms metalearning, learn-
ing to learn, and lifelong learning are often used
interchangeably in the machine-learning liter-
ature, and all typically refer to automatically or

dynamically learning an appropriate bias. This
can take many forms, from learning to predict
which algorithm(s) will perform best in a new
problem domain based on features of the
domain itself, to developing self-modifying
learning algorithms, and many others that we
will discuss later.

One theme common to much of the work
on metalearning is learning from multiple,
related tasks. Very recently, the Defense Ad -
vanced Research Projects Agency (DARPA)
Transfer Learning program began funding work
in precisely this area, and there was a workshop
on structural knowledge transfer at the 2006
International Conference on Machine Learn-
ing (ICML-06). Computationally, the assump-
tion that the tasks faced by the learner are relat-
ed to one another represents a powerful bias at
the metalevel, ensuring that metalearning
algorithms do not run afoul of the NFL theo-
rems or the LCGP. Indeed, it has been shown
both empirically (Thrun 1996) and theoretical-
ly (Baxter 2000) that this bias can improve gen-
eralization performance, especially when train-
ing data are scarce. Pragmatically, much
human learning (some would claim all human
learning [Hintzman 1994]) involves transfer—
adapting knowledge learned in one domain to
facilitate learning in another domain—and we
would like to deploy machine learners in
domains similar to those faced by humans. For
example, when learning to play lacrosse, every-
thing from motor skills to tactics to strategies
learned while playing soccer can serve as a
starting point, with subsequent modification
through learning given experience in the
lacrosse domain. 

In what follows, we will use the term met-
alearning somewhat broadly, in the informal
sense described above of automating one or
more of the decisions required to apply
machine learning to a task or tasks. This high-
level view of metalearning can be instantiated
in a variety of ways, and we now turn our
attention to describing a representative
(though necessarily incomplete) sample of
them.

Learning to Choose 
a Learning Algorithm
Some of the earliest work on metalearning in
the machine learning community focused on
automated algorithm selection (Aha 1992,
Brodley 1994), particularly in the area of super-
vised classification. Given a dataset, one can
compute metalevel features of the dataset such
as the number of instances, the number of class
labels, the number and type of attributes per
instance, and so on. When these features are
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computed for a large number of datasets, and
the performance of a variety of learning algo-
rithms is measured on these datasets, learning
can occur at the metalevel where the goal is to
learn a mapping from dataset features to algo-
rithm performance. 

Recent work in this area has considered
using features other than those derived direct-
ly from the data as input to the metalevel
learner. For example, Hilan Bensusan and col-
leagues (Bensusan, Giraud-Carrier, and
Kennedy 2000) noted that a decision tree is
learned for each domain, and features of the
learned tree—for example, number of nodes,
depth, shape—serve as features that are used to
predict the performance of other classification
algorithms on the same dataset. Bernhard
Pfahringer (Pfahringer, Bensusan, and Giraud-
Carrier 2000) noted that learning algorithms
are divided into two sets, and the performance
of the algorithms in the first set serves as a fea-
ture vector that is used when learning to pre-
dict the performance of the algorithms in the
second set. 

Ensemble Methods: 
Metalearning or Not?
Ensemble methods combine the outputs of
multiple classifiers (hypotheses) in various
ways. In stacked generalization (Wolpert 1992),
a set of base classifiers is trained either on dif-
ferent subsets of the data or using different
types of classifiers on the entire dataset, and a
metalevel classifier is trained to predict a class
label given the predictions of the base classi-
fiers for each instance (but not the feature val-
ues used to train the base classifiers). In bag-
ging (Breiman 1996), multiple classifiers are
trained by sampling from the full dataset; and
in boosting (Freund and Schapire 1996), multi-
ple classifiers are trained by iteratively
reweighting instances to emphasize those that
are misclassified, retraining on the reweighted
data, and adding the resulting classifier to the
ensemble. All three of these methods have
been shown to improve generalization accura-
cy. Are these methods metalearning methods?
It depends on your working definition of met-
alearning. In their survey of metalearning,
Ricardo Vilalta and Youssef Drissi (2002) claim
that stacked generalization is metalearning
because the transformed dataset conveys met-
alevel information about the performance of
the base classifiers, but that bagging and boost-
ing are not metalearning methods. From the
standpoint of metalearning as dynamic bias
change, bagging and stacking tend to reduce
errors by reducing variance while having little
impact on bias (see Friedman [1997] for a good

introduction to the bias/variance decomposi-
tion), whereas the opposite is true of boosting,
contradicting the conclusions of Vilalta and
Drissi. 

Parameter Sharing
When classification tasks are related, it is rea-
sonable to assume that the solutions to the
tasks (chosen hypotheses) will resemble one
another. One way this has been cashed out is
through parameter sharing among learned
models. Given a set of N classification tasks
with common input spaces, rather than train-
ing N neural networks, each with a single out-
put, Rich Caruana (1997) constructed one neu-
ral network with N outputs. Training such a
network to predict all N class labels simultane-
ously for each input produces representations
in the hidden layer that are useful across tasks,
rather than within a single task. 

The idea of parameter sharing is cashed out
differently in Bayesian approaches to met-
alearning. Some of the very early work on met-
alearning was done in the statistics communi-
ty under the rubric of hierarchical Bayes
(Berger 1985; Good 1980). More recently, Greg
Allenby and Peter Rossi (1999) considered
learning linear functions where the weight vec-
tors defining the functions to be learned are
drawn from a common multidimensional
Gaussian distribution. The smaller (larger) the
variance of this distribution, the more (less)
closely related the tasks. An iterative Gibbs
sampling algorithm is used to simultaneously
estimate the parameters of the Gaussian and
the weight vectors of the individual functions.
Bart Bakker and Tom Heskes (2003) take a sim-
ilar approach, but assume a mixture of Gaus-
sians rather than a single Gaussian.

In a similar vein, rather than assuming the
weight vectors are drawn from a common dis-
tribution, in the context of support vector
machines, Theodoros Evgeniou and Massimil-
iano Pontil (2004) assume each weight vector is
the sum of W0, which is shared by all tasks, and
Vi, which is specific to the ith task. That is, Wi
= W0 + Vi. The standard optimization problem
is modified to include a weighted penalty on
the sum of the magnitudes of the Vi. As that
weight increases, the Vi are forced to be small-
er, and the tasks become increasingly similar
because W0 dominates. This work was later
augmented to include kernels that produce
vector valued outputs (Evgeniou and Pontil
2004, Micchelli and Pontil 2005), much like
Caruana’s neural networks with vector valued
outputs.
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Theoretical investigations
A large body of theoretical results exists for sin-
gle-task learning, and some recent work has
begun to shed light on theoretical issues in
multitask learning. Jonathan Baxter (2000)
considers learners who are given a family of
hypothesis spaces and a set of related tasks, and
must find a hypothesis space that is suitable for
the entire set of tasks. An extension of the well-
known VC dimension is defined and then used
to derive upper bounds on the sample com-
plexity (number of training instances) required
for good generalization. Shai Ben-David and
Reba Schuller (2003) assume that the tasks are
related through a data generation mechanism
that they define and obtain tighter bounds that
hold on a per task basis, rather than averaged
over all tasks.

Learning New Learning Algorithms
Marvin Minsky asks “should we suppose that
outstanding minds are any different from ordi-
nary minds at all, except in matters of degree?”
(Minsky 1982). His answer is, partially, no; to
have an outstanding mind rather than an ordi-
nary mind “one must learn to be better at
learning!” Perhaps the most tantalizing
prospect of metalearning is precisely that, algo-
rithms that learn to improve their ability to
learn. The work of Juergen Schmidhuber and
his colleagues, especially Marcus Hutter (2004),
addresses this prospect.

The Gödel machine (Schmidhuber 2005) is
“the first class of mathematically rigorous, gen-
eral, fully self-referential, self-improving, opti-
mal reinforcement learning systems.” The idea
here is to start the machine with a suboptimal
program P for interacting with the environ-
ment, such as Q-learning, and a theorem
prover that systematically generates pairs of
the form (switchprog, proof) until it finds a proof
that executing switchprog on P will result in
higher utility than leaving P alone. This
approach is shown to be “globally optimal”
(that is, there are no local minima) because
proving that the new program obtained by
running switchprog has higher utility than con-
tinuing with the current program includes cas-
es where the current program would find an
even better switchprog later. Sadly, as one might
expect, the computational complexity of this
approach is prohibitively expensive. Despite
the fact that the Gödel machine is practically
infeasible, the importance of this works derives
from the theoretical characterization of the
problem and showing that at least one solution
exists. 

Conclusion
Natural intelligent systems tend to be robust;
artificial intelligent systems tend to be brittle.
Humans may not behave optimally very often,
but we can muddle through in just about any
circumstances. In contrast, many artificial sys-
tems exist that behave optimally in narrow
domains but simply cannot function at all out-
side of those domains. Worse still, these sys-
tems often do not even recognize that the
domain has changed and blithely continue
computing solutions to the wrong problems.
One pillar upon which robustness rests is
metacognition (Flavell 1979, 1987), including
both metareasoning and metalearning. If arti-
ficial intelligent systems are to move beyond
the ingenuity of their designers and have
extended interactions with a dynamic world,
research in metacognition is vitally important.
As this review and the companion articles sug-
gest, there is much to be excited about in this
area.
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