
Inappropriate prescribing of antimicrobials is a major clin-
ical problem and health concern, as well as a financial
burden, in hospitals worldwide. It has been reported that

as many as 50 percent of antimicrobial prescriptions are sub-
optimal or inappropriate (Dellit et al. 2007). Antimicrobial
stewardship programs have been shown to reduce avoidable
adverse effects (toxicity, antimicrobial resistance, Clostridium
difficile, and others [Dellit et al. 2007; Valiquette et al. 2007]),
improve patient health, and reduce unnecessary costs. How-
ever, these programs require the review of an overwhelming
amount of clinical data by dedicated experts, which proves to
be an obstacle in the current context of limited health-care
resources. Therefore, hospitals are increasingly relying on
automated decision support systems to review hospitalwide
antimicrobial prescriptions.

The difficulties of antimicrobial prescribing lie in selecting
the right antimicrobial therapy for the suspected pathogen
and adjusting the dose and dosing frequency with an appro-
priate route of administration to ensure effective levels of

Articles

SPRING 2014   15Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

An Antimicrobial 
Prescription Surveillance 

System That Learns 
from Experience

Mathieu Beaudoin, Froduald Kabanza, 
Vincent Nault, Louis Valiquette

n Inappropriate prescribing of antimi-
crobials is a major clinical concern that
affects as many as 50 percent of pre-
scriptions. One of the difficulties of
antimicrobial prescribing lies in the
necessity to sequentially adjust the
treatment of a patient as new clinical
data become available. The lack of spe-
cialized health-care resources and the
overwhelming amount of information
to process make manual surveillance
unsustainable. To solve this problem,
we have developed and deployed an
automated antimicrobial prescription
surveillance system that assists hospital
pharmacists in identifying and report-
ing inappropriate prescriptions. Since its
deployment, the system has improved
antimicrobial prescribing and decreased
antimicrobial use. However, the highly
sensitive knowledge base used by the
system leads to many false alerts. As a
remedy, we are developing a machine-
learning algorithm that combines
instance-based learning and rule induc-
tion techniques to discover new rules for
detecting inappropriate prescriptions
from previous false alerts. In this arti-
cle, we describe the system, point to
results and lessons learned so far, and
provide insight into the machine-learn-
ing capability.



medication are administered at the site of the infec-
tion. Inappropriate prescribing can range from select-
ing an antimicrobial to which the causative
pathogen is resistant, making the treatment ineffec-
tive and endangering the life of the patient, to pre-
scribing a given antimicrobial while another signifi-
cantly less expensive but equally effective and safe
alternative is available. Moreover, a selected antimi-
crobial therapy will be valid over a finite period of
time; after selecting an initial empiric treatment, the
physician must review his or her earlier prescription
to account for newly available information.

As an example, consider the scenario of sequential
therapy depicted in figure 1. A patient is admitted at
the emergency room with a heavy cough and fever.
The physician suspects a severe community-acquired
pneumonia and confirms its diagnosis using a chest
X ray. He begins an empiric broad spectrum therapy
of ceftriaxone and moxifloxacin administered intra-
venously to cover a wide number of bacteria types
associated with pneumonia. The physician requests
sputum samples to be tested for common bacterial
causes of pneumonia. A Gram stain is performed first
and identifies the presence of Gram positive diplo-
cocci (suggestive of Streptococcus pneumoniae) allow-
ing to refine the antimicrobial therapy. A microbial
culture confirms within 48 hours the presence of
Streptococcus pneumoniae. The antibiotic sensitivity
profile of Streptococcus pneumoniae follows shortly
demonstrating high susceptibility to penicillin. The
prescribing physician is now able to select the most
appropriate antimicrobial for this specific strain. By
the fourth day, the clinical status of the patient
improves; the prescribing physician can perform an
early switch from an intravenous to oral antimicro-
bial therapy. This allows the patient to be discharged
earlier with a less costly, but equally effective, oral
treatment that he or she will pursue at home. Errors
could occur at any point of this sequential therapy,
including unduly delaying or even forgetting to

make therapy adjustments (for example, keeping the
patient under intravenous therapy after his or her
clinical status improved sufficiently and allowed for
an early switch to oral therapy).

For the most part, prescription monitoring sys-
tems use a knowledge base (KB) of rules acquired
from published guidelines and experts to detect inap-
propriate prescriptions and prevent potential adverse
events. Local and commercial solutions are generally
characterized by highly sensitive rules with poor pre-
cision that trigger a high rate of clinically unhelpful
alerts (Hsieh et al. 2004; Reichley et al. 2005). This
high rate of false alerts impedes their use. The prob-
lem comes from the inability to create a complete
and precise KB and the tendency to otherwise use a
“totally inclusive” KB. It is difficult to model all vari-
ables that a prescribing physician will take into
account, let alone model the decision-making
process. Antimicrobial prescribing is a subjective
process where physicians continually rely on their
experience to select an effective treatment and pre-
vent adverse events. In addition to published guide-
lines, hospitals have their own local practices (Reich-
ley et al. 2005) that must be covered by these rules.

We have developed a new antimicrobial prescrip-
tion monitoring system called APSS — antimicrobial
prescription surveillance system. APSS was integrated
successfully into a Canadian academic medical cen-
ter. Like other antimicrobial prescription monitoring
systems, APSS uses a KB that suffers from a high rate
of false alerts. However, unlike any other previous
system, APSS is able to learn new prescription sur-
veillance rules. This learning capability is designed to
allow APSS to self-reconfigure to local practices after
deployment and to self-improve its KB over the long
term supervised by user feedback. Although the
application of machine learning to clinical temporal
data is not new, to the best of our knowledge, this is
its first application to the monitoring of drug pre-
scriptions.
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Figure 1. Example of Sequential Antibiotic Therapy.
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Taking the temporal nature of antimicrobial pre-
scribing into account, APSS uses a supervised learn-
ing algorithm for discovering rules that classify tem-
poral sequences. We approach the problem as a
binary classification task where rules are used to iden-
tify “bad” temporal sequences that contain an inap-
propriate prescription. The algorithm we use is a
combination of rule induction and instance-based
learning methods that uses nearest neighbor classifi-
cation with a distance function on both temporal
and nontemporal parameters.

In the next section, we give an overview of APSS
and discuss its development, deployment, and eval-
uation thus far. We then describe the ongoing devel-
opment of the machine-learning extension. We fol-
low with a presentation of preliminary results for this
learning capability and conclude with ongoing and
future work.

Antimicrobial Prescription 
Surveillance System

APSS is currently deployed at the Centre Hospitalier
Universitaire de Sherbrooke, a 713-bed Canadian aca-
demic medical centre. It assists hospital pharmacists
in their antimicrobial stewardship activities by iden-
tifying mismatches between prescribed antimicro-
bials and published and local guidelines. APSS mon-
itors the clinical information of a patient; as new
information becomes available, it verifies that the
ongoing treatment remains appropriate according to
contraindications conveyed by rules in its KB. The KB
contains rules that account for approximately 50,000
contraindications related to inappropriate drug-drug
interactions, drug-bug or drug-laboratory mismatch-
es, cheaper alternatives, maximum daily dose, maxi-
mum and minimum dose and frequency, maximum
duration, and route of administration.

APSS assists in the postprescription revision
process, as illustrated in figure 2. The prescriber
chooses an antimicrobial therapy after an initial
assessment of the patient. The pharmacy department
performs a posteriori computerized order entry into
the electronic health-record system of the Centre
Hospitalier Universitaire de Sherbrooke, QuadraMed
Computerized-Patient Record. New and modified
prescriptions are automatically sent to APSS along
with all patient clinical data. APSS reviews these pre-
scriptions using the most recent clinical information
of a patient and produces documented alerts for
potentially inappropriate prescriptions. The pharma-
cist first reviews these alerts and then contacts the
prescriber by phone to recommend a prescription
modification or discontinuation if deemed appropri-
ate. If the prescriber accepts the recommendation, a
new order is sent to the pharmacy and the cycle con-
tinues. The pharmacist records the validation of
every revised alert.

The project began in 2005 with the objective of

finding a solution to facilitate manual antimicrobial
optimization. An intensive manual antimicrobial
optimization program was implemented in 2004–
2005 to control an outbreak of C. difficile infections
at the Centre Hospitalier Universitaire de Sherbrooke
by decreasing the use of high-risk antibiotics. Antimi-
crobial optimization decreased overall use of antimi-
crobials during this period (Valiquette et al. 2007)
and the outbreak subsided. However, these measures
required important resources that could not be sus-
tained subsequently. After manual surveillance end-
ed, overall antimicrobial consumption eventually
returned and surpassed preoutbreak levels.

The solution put forward was to use an automat-
ed prescription monitoring system to facilitate and
enhance the antimicrobial stewardship activities. We
selected an asynchronous revision process because it
dovetails nicely with the pen and paper prescribing
practices that are still the norm at the Centre Hospi-
talier Universitaire de Sherbrooke. Synchronous vali-
dation at the time of computerized order entry was
ruled out because it was perceived to hinder the
workflow of prescribing physicians. Introducing APSS
to the antimicrobial stewardship program was sim-
ple; we provided a tool that assists the hospital phar-
macists already assigned to antimicrobial revision,
resulting in a transparent integration into the exist-
ing prescribing practices.

We set about to develop APSS in 2007 and began
with the complex task of developing its KB. Our mul-
tidisciplinary team consisted of one professor-
researcher assisted by a doctoral candidate in comput-
er science and a programmer-analyst, one infectious

Figure 2. Asynchronous Surveillance Using APSS.
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diseases physician-researcher assisted by a doctoral
candidate in clinical science, and one hospital phar-
macist. We extracted rules from published and local
guidelines and tested them retrospectively to validate
the potential for prospective interventions.

The approach used by APSS to revise antimicrobial
prescriptions is inspired from a standardized model
for evaluating antibiotic prescriptions (Gyssens et al.
1992) and depicted in figure 3. Following this mod-
el, a prescribed antimicrobial therapy is considered
valid unless it violates specified contraindications.
The revision process consists of evaluating different
parameters of importance for contraindications to
the selected therapy. Prescriptions can be inappro-
priate according to different parameters, in which
case multiple alerts are triggered. This revision
process does not only occur at the time of prescrip-
tion, but continues as additional clinical information
becomes available. The antimicrobial therapy is in
principle revised as additional clinical information
comes in. Like it is illustrated in figure 1, the physi-
cian may diagnose a bacterial infection after an ini-
tial clinical evaluation of the patient, prescribe a par-
ticular antimicrobial therapy and, in the meantime,
order microbiology tests. The results of these tests
will inform on the specific species, type and sensitiv-
ity profile of the infecting bacteria. Assuming the
profile indicates that the bacteria is resistant to the
previously prescribed antimicrobial therapy, that is,
the previously prescribed therapy is ineffective
against this particular bacteria, then the prescription
should be revised for a more effective alternative.

As illustrated in figure 3, prescription revision

according to the Gyssens model begins by verifying
whether there is sufficient available information for
evaluating a prescription (Step VI). The revision
process halts whenever critical information is miss-
ing. It then looks for clinical contraindications to the
prescribed antimicrobial therapy (Step V). As new
clinical information becomes available, the antimi-
crobial therapy evolves from the initial empiric broad
spectrum therapy for a suspected infection to a spe-
cific narrow spectrum therapy targeted toward a spe-
cific pathogen (Step IVd). This new information may
also indicate a more effective alternative (Step IVa),
an equally effective but less toxic alternative (Step
IVb), or an equally effective but less costly alternative
(Step IVc). The total duration of the antimicrobial
therapy is also monitored. A too short therapeutic
course (Step IIIb) may lead to treatment failure
whereas inadequately prolonged therapy (Step IIIa)
increases the risk of adverse drug events and may be
associated with increased antimicrobial resistance.
Doses are validated (Step IIa) along with correspon-
ding dosing frequency (Step IIb) to ensure effective
serum concentration. The route of administration
(Step IIc) must ensure delivery of sufficient concen-
tration of antimicrobial to the targeted site. The tim-
ing (Step I) must also be questioned, since therapy
administered too early or too late could prove useless,
if not harmful.

The design of the KB for APSS follows the Gyssens
model. Each step in this process corresponds to a set
of contraindication rules to be checked. We charac-
terized and segmented the antimicrobial domain
knowledge according to these steps, regrouping rules
to be evaluated together (for example, adequacy of
dose and dosing interval). We also created higher lev-
el attributes, such as patient “type,” derived from
multiple attributes that represent clinical concepts
used by experts when reasoning about antimicrobial
therapies. Rules were created by category as a con-
junction of propositions on relevant prescription
parameters, patient data, patient type, and others The
rule segmentation proved to be helpful in maintain-
ing the KB. It also contributes to the efficiency of the
system in that the firing of rules in each step con-
cerns a small set of rules, as opposed to firing all the
rules in one step.

The expert system for APSS (the KB and the algo-
rithm for checking contraindication rules) was devel-
oped in C#.NET, using SQL-compatible database
tables for the KB. The KB can be visualized and edit-
ed by using the knowledge management tool. The KB
is for the most part maintained by clinical pharma-
cists. The maintenance in particular involves making
changes that are required to reflect updates in pub-
lished guidelines and local prescribing practices.
Changes that involve new rule structures (for exam-
ple, new parameters that are not accounted for in the
KB) require the assistance of a computer programmer.
Since the deployment of APSS in August 2010, the
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Figure 3. Standardized Model to Evaluate Antibiotic Prescriptions.
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interventions of a programmer have been quite lim-
ited. One instance occurred during a recent minor
outbreak of C. difficile infections. The committee on
health-care-associated infections requested the addi-
tion of temporary rules to monitor every high-risk
antimicrobial.

APSS can communicate with the electronic health-
record system through a data communication inter-
face that we have developed. In collaboration with
the Information Technology (IT) Department, we
identified the required variables and normalized their
values. We developed the exportation and importa-
tion interfaces using Health Level Seven (HL7) stan-
dards. We finally deployed the databases and knowl-
edge management module of APSS. Support from the
Centre Hospitalier Universitaire de Sherbrooke’s deci-
sion makers and IT Department management was
required to ensure advancement of these steps.

In August 2010, we finally deployed APSS at the
Centre Hospitalier Universitaire de Sherbrooke. APSS
was met by the prescribers and decision makers with
unanimous appreciation and recognition. APSS
increased the amount of prescriptions revised daily
by the pharmacist. It also increased the impact of the
antimicrobial stewardship program by enabling
pharmacists to target patients who need it most. APSS
enabled to extend antimicrobial surveillance from
high-risk wards (for example, intensive care) to every
bed of the two physical sites of the Centre Hospital-
ier Universitaire de Sherbrooke.

During a 53-week period, a clinical pharmacist
used APSS an average of 15 hours per week. APSS
evaluated 37,770 antimicrobial prescriptions. As
summarized in figure 4, alerts were triggered for
10,837 (29 percent) of these prescriptions. However,
alerts for 6,673 prescriptions could not be reviewed
because they occurred outside of the allocated time.
Of the 4,164 reviewed alerts, 2,820 (68 percent) were
overridden by a pharmacist; 1,754 (42 percent) were
considered clinically irrelevant while another 1,066
(26 percent) did not have sufficient clinical impact to
justify modifying the current treatment (for example,
alert triggered at the end of a prescription). The phar-
macist contacted prescribers 1,344 times and they
accepted 1,222 (91 percent) recommendations. This
evaluation period was associated with a reduction of
13.5 percent in antimicrobial consumption and
Canadian dollars (CAD) 305,000 (15 percent) in
antimicrobial expenditures.

In September 2011, full-time surveillance began
divided among a team of five pharmacists. As of Sep-
tember 2012, the override rate of alerts had subsided
to 50 percent, with an acceptance rate by prescribers
stable at 91 percent. APSS had contributed to 3,156
interventions, which were associated with reductions
of 22 percent in intravenous antimicrobial consump-
tion and CAD 688,000 in direct antimicrobial
expenses. We are currently evaluating the impacts of
APSS on patient health.

APSS Learning Capability
The learning module of APSS aims to discover new
rules for classifying inappropriate prescriptions
supervised by user feedback, such as the rejection of
false alerts or the identification of unflagged inap-
propriate prescriptions. From the beginning of the
project we started investigating a mechanism to
improve the KB of APSS from experience. The alerts
were all documented, along with feedback from
pharmacists and prescribers. We began implement-
ing the learning module in 2011. It is not deployed
and is still under testing. Here, we report on its pre-
liminary results.

The learning module interacts with the other
modules of APSS to discover and test new rules using
patient data and revised alerts (see figure 5). The
import module is responsible for acquiring and nor-
malizing clinical data from the electronic health-
record system and storing it into the databases of
APSS. The review module uses the KB to review
antimicrobial prescriptions and stores user feedback
for revised alerts. The evaluation module produces
custom reports on antimicrobial consumption,
alerts, and others.

When deployed, we expect the learning module
to enable users (such as pharmacists) to discover
rules for specific antimicrobials and alert types. The
user will use the evaluation module to identify com-
monly overridden alerts and patients who received
specific antimicrobials and did or did not present the
alerts of interest. This data will be used to create data
sets for training and testing rule sets. Rules with suf-
ficient recall (sensitivity) and accuracy will be sug-
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Figure 4. Alerts Triggered During a 53-Week Period.
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gested for review. The user will then be able to add
clinically relevant rules to the KB.

In addition to improving APSS in the long run in
every hospital where it is deployed, this learning
capability is expected to help configure APSS when-
ever it is deployed at a new hospital that has pre-
scription practices differing from the Centre Hospi-
talier Universitaire de Sherbrooke where APSS is
currently deployed. Another expected use of this
learning module is data mining to discover unfore-
seen yet clinically relevant patterns of inappropriate
prescribing that may be addressed by the stewardship
program with targeted in-service training. One such
pattern was discovered during our experimentation
and is discussed in the Preliminary Results section.

Cohort Selection and Data Preprocessing
For the experiments discussed later in this article, we
considered the following patient cohort: every adult
inpatient (18 years of age and older) receiving at least
one monitored antimicrobial admitted between Jan-
uary 1, 2012 and June 30, 2012. A cohort of 7,740
hospitalizations was created, consisting of 5,756
patients who received 19,172 antimicrobial prescrip-
tions. Alerts were triggered for 7,027 prescriptions.
We considered the following attributes: gender, age,
body mass index (BMI), patient location (ward), tem-
perature (temp), white blood cell count (WCC), neu-
trophil count (neut), creatinine clearance (CrCl), res-
piratory rate (resp), pulse, and blood pressure (BP). An
attribute was also created for each medication, where
prescriptions were described using their name, dose,
frequency, and route of administration, as well as their
revised alerts.

We used temporal abstraction (Shahar 1997) to
extract a uniform and meaningful data representa-
tion from the raw clinical data of APSS. This raw data
contains qualitative and quantitative attributes sam-
pled with both time points (for example, temp) and
time intervals (for example, drug order). Figure 6 illus-
trates the process of state abstractions for the raw
temp time series. Quantitative thresholds are used to
identify qualitative states that hold over a period of
time, which we call episodes. We extracted a single
sequence for each hospitalization. Within a hospital-
ization, the observation period was restricted to the
ongoing antimicrobial of interest. We considered
only data between the first (tmin) and last (tmax)
administered dose. It ensured a common time zero
(tmin) between sequences. We used a temporal granu-
larity of 1 hour.

Selecting the Learning Algorithm
There are various applications of data mining and
machine-learning algorithms to clinical temporal
data. Association rule discovery has been used to gain
insight into the causes of clinical events of interest
(Bellazzi et al. 2005; Concaro et al. 2009); however, it
is geared toward discovering rules for frequent pat-
terns and performs poorly when addressing infre-
quent patterns (Zaki, Lesh, and Ogihara 2000), such
as inappropriate prescriptions. It uses an Apriori-like
strategy (Agrawal and Srikant 1994) with breadth-first
search and candidate pruning based on support and
confidence. The problem when looking for infre-
quent patterns is the necessity to lower support
thresholds. It inefficiently prunes the candidate space
and potentially leads to an intractable search space. It
also produces an overwhelming amount of uninter-
esting patterns from which it is difficult to distin-
guish interesting ones (Zaki, Lesh, and Ogihara
2000).

Another method that was used to identify clinical
events of interest is case-based reasoning. Whereas
instance-based learning (Aha, Kibler, and Albert
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Figure 5. Overview of the Learning Module of APSS.
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1991) accumulates observed instances and classifies
new instances using the nearest known ones, case-
based reasoning (Aamodt and Plaza 1994) uses back-
ground information to create meaningful cases that
are reused or adapted, in full or in part, to solve new
problems. For example, case-based reasoning has
been used to identify potential adverse drug events
(Hartge, Wetter, and Haefeli 2006) and hemodialysis
treatment failures (Montani, Portinale, and Leonardi
2006). While they are known to perform well with
few instances, these algorithms are burdened with
irrelevant attributes (Domingos 1996) and accumu-
late large quantities of cases. This is a problem when
looking for a small set of highly accurate rules aimed
at a human user.

A complementary approach to instance-based
learning is rule induction. Rule induction disposes
easily of irrelevant features, separates classes with
good accuracy, and extracts a small set of rules that
can lead to better predictions (Domingos 1996).
However, it tends to be affected by a skewed distri-
bution of classes and produces rules that favor the
overrepresented classes (Chawla, Japkowicz, and
Kotcz 2004).

Following Domingos (1996), we have chosen an
algorithm that combines instance-based learning and
rule induction. However, unlike Domingos (1996),
which learns classification rules for a labeled set of
nontemporal feature-value data, our algorithm was
designed to learn classification rules for a labeled set
of episode sequences in addition to nontemporal fea-
ture-value data.

Formulating the Learning Problem
Let us consider the attribute space A as the finite set
of attributes for our domain and the feature space F as
the finite set of qualitative values observed for these
attributes. An episode e is defined as <a, f, ts, te>, where
(a = f) describes a symbolic state with a ∈ A and f ∈ F
holding over the time interval [ts, te[. We refer to the
attribute, feature, start, and end times of an episode as
e.a, e.f, e.ts, and e.te, respectively. An example of
episode from figure 6 is <temp, normal, tmin, t3 >.

A sequence s is defined by {e1, …, en |∀i = 1, …, n –
1 : ei.ts ≤ ei+1.ts}, where n = |s| represents the size of the
sequence. We refer to the subsequence of s for the ith
attribute ai ∈ A as atti(s) defined by {e1, …, em | ∀e ∈
atti(s) : e ∈ s; e.a = ai ; ∀j = 1, …, m – 1 : ej.te ≤ ej+1.ts},
where m = | atti(s)|. A hospitalization is described as a
labeled sequence ls defined as {id, s, l}, where id is a
unique identifier, s is a sequence, and l is a class label
that belongs to the finite set of class labels L. We
focus on a binary-class problem where L = {appropri-
ate, inappropriate}. We used revised alerts of APSS to
label every sequence, where inappropriate indicates a
true positive (alert that has been validated by a user)
and appropriate indicates a negative (no alert) or false
positive (alert that was rejected by a user).

We can now formally state the supervised

machine-learning problem that concerns us. Given a
finite training set of labeled sequences TS, discover a
rule set R for inappropriate sequences. We only have
two classes (appropriate and inappropriate). Learned
classification rules identify inappropriate instances.
The antecedent of a learned rule is a conjunction of
propositions over time intervals, represented as
episodes, whose satisfaction implies membership to
the inappropriate class as the consequent.

Temporal Induction of 
Classification Models
Our supervised learning algorithm, called temporal
induction of classification models (TIM), combines
instance-based learning and rule induction. Its main
operations are depicted in figure 7. The rule set is ini-
tialized using all of the inappropriate sequences of
the training set as maximally specific rules. The pair-
wise distances between the rules and sequences of
the training set are computed and stored in a multi-
dimensional distance matrix to reduce computation
times. The rule refinement process aims to increase
interclass distance by modifying every rule in paral-
lel according to a rule’s most similar appropriate
sequence. These locally promising modifications are
performed until they no longer improve a rule. Near-
est neighbor classification is performed and rules are
evaluated using the J-measure (Smyth and Goodman
1991), which quantifies the average information
content of a rule.

We selected the J-measure for its ability to account
for both simplicity and goodness-of-fit, measuring the
probability of occurrence of a rule and its cross-
entropy (Smyth and Goodman 1991). As a working
hypothesis, a rule with high information content
(that is, high probability and cross-entropy) is also
likely to have a high predictive accuracy.
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Figure 7. Pseudocode for the TIM Algorithm.

initialize ruleset from inappropriate sequences
initialize distanceMatrix with pairwise distances
do
 for each rule r in ruleset do
  s = most similar appropriate sequence to r
  r’ = modify conditions of r according to s
  update distanceMatrix according to r’
  if J-measure(r’) > J-measure(r) then
   replace r by r’ in ruleset
 end for each
while ruleset was improved



Classification
Classification is performed according to a distance
function that measures the similarity between the
conditions of a rule, represented by episodes, and the
sequences of the data set. We use a nonsymmetric
distance function where similarity is proportional to
the number of conditions that a sequence satisfies.
We consider that a sequence fully satisfies a condi-
tion if its episodes subsume the condition over its
entire time interval, that is, a sequence is perfectly
similar to a rule if it subsumes all of its conditions.
Given a rule r ∈ R with Nr attributes and a sequence s∈ TS, the global distance(r, s) function is defined by
equation 1. All attributes contribute equally to a nor-
malized coefficient between [0, 1] that does not arbi-
trarily favor shorter rules, where 0 denotes perfect
similarity. A sequence is covered by a rule if their dis-
tance is below a parameterized minimal distance
threshold Dmin, in which case it becomes labeled
inappropriate.

The Da ∈ [0, 1] function measures the distance
between the subsequences atti(r) and atti(s) for the ith
attribute of r. If atti(s) = null, Da = 1, otherwise we use
equation 2, which measures the distance between the
conditions cj ∈ atti(r) and episodes ek ∈ atti(s).

The similarity between the conditions of a rule
and the episodes of a sequence considers both tem-
poral and nontemporal parameters. The feature simi-
larity function SF measures the similarity between the
symbolic features of cj and ek using the overlap metric
where SF (cj, ek) = 1 if (cj.f = ek.f) and 0 otherwise. The
temporal similarity function ST is proportional to the
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temporal overlapping of ek over cj, as measured by
equation 3. ST returns a coefficient between [0, 1],
where 1 implies [cj.ts, cj.te[ ⊆ [ek.ts, ek.te[.

Consider the attribute-specific subsequences of fig-
ure 8. The antecedent of a rule atti(r) with conditions
c1 and c2 overlaps the subsequence atti(s) with
episodes e1, e2, and e3. Conditions c1 and c2 are inter-
preted as follows: for attribute atti (for example,
temp), value Normal should be observed during time
interval [0, 5[ and value High should be observed dur-
ing time interval [5, 8[. Episode e1 partially satisfies
condition c1, whereas episode e2 fully satisfies condi-
tion c2. Their distance reflects this partial similarity
with a coefficient of 0.2, computed as follows:

Refinement of the Rule Set
The intuition behind this rule refinement process is
that increasing interclass distance creates more accu-
rate rules. Each iteration provides a set of locally
promising modifications selected according to a rule’s
most similar appropriate sequence. Rules are modi-
fied by removing the temporal overlapping between
a similar condition c and episode e, resulting in a
modified condition c′ being either entirely removed
or subsumed by c.

For example, modifying the conditions of figure 8
according to episodes e1, e2, and e3 reduces the time
interval of c1 from [0, 5[ to [3, 5[ and completely
removes c2. Consequently, the distance between
these subsequences increases from from 0.2 to 1, as
illustrated in figure 9.

Preliminary Results for the 
Learning Capability
For a preliminary evaluation of the learning capabil-
ity, we tested APSS with learning rules that identify
an early switch from intravenous to oral therapy, a
key intervention in antimicrobial prescribing used at
the end of the example presented in figure 1. A clin-
ically valid recommendation requires the following
indications: 72 consecutive hours of intravenous
antimicrobial therapy, 48 hours of stabilized state of
health (for example, normal levels of temperature
and white blood cell), and 24 hours of concurrent
oral therapy. The rules for recognizing patients who
are eligible for an early switch involve nontrivial tem-
poral constraints, making them a good test case for
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Figure 8. Example of Conditions and Episodes.
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the learning algorithm. In this experiment, this rule
is not specified. The data set only contains inappro-
priate and appropriate labels specifying if a hospital-
ization contains or not a validated recommendation
for early switch therapy. The objective is to demon-
strate that our algorithm is capable of learning these
clinical indications from alerts.

We created two data sets of different sizes and
ratios of inappropriate sequences. The first was creat-
ed with patients who received piperacillin-tazobac-
tam (TAZO), the most prescribed intravenous antimi-
crobial at the Centre Hospitalier Universitaire de
Sherbrooke. We created a smaller data set with
patients who received metronidazole (METRO), an
antimicrobial predominantly prescribed orally. They
were partitioned into training and test data sets. Fig-
ure 10 describes their number of episodes, sequences,
inappropriate sequences, and attributes. APSS pre-
processed these data sets in 121.9 and 6.9 seconds,
respectively.

TIM extracted an accurate and sensitive set of 35
rules. While precision was lower, it remained above
APSS without TIM. Rules were presented to an infec-
tious diseases specialist who evaluated their clinical
relevance using a five-point Likert scale ranging from
1 — no relevance to 5 — excellent relevance. Excel-
lent relevance required the presence of all three indi-
cations for early switch therapy. Figure 11 presents
the scores; 63 percent of the rules were found to be
clinically relevant (score ≥ 3). Interestingly, rules with
high relevance scores also had the highest informa-
tion content (J-measure). On the other hand, rules
with a relevance score of 1 were very specific and cov-
ered less than 1 percent of the test set. Removal of
these rules from the rule set leads to little loss in alert
coverage and accuracy.

Our expert noted the presence of patterns describ-
ing patient profiles associated with early switch ther-
apy. Consider the conditions of the rule in figure 12
with a relevance score of 5. Noting C the conjunction
of these conditions, we have the rule C → inappropri-
ate. The three direct indications for early switch ther-
apy are respected with prolonged intravenous (IV)
treatment, normal levels of white blood cell (WCC),
and concurrent oral treatment. However, it is com-
plementary information observed in the rules that
provided interesting insights into the prescribing
practices of the Centre Hospitalier Universitaire de
Sherbrooke. For example, in this rule, prolonged stay
at the emergency room (ER), an older patient, salbu-
tamol, and additional antimicrobial coverage with
ciprofloxacin may indicate suspicion of pneumonia
caused by resistant pathogens. Ten other rules target-
ed patients under postoperative antimicrobial pro-
phylaxis, a practice not supported by medical evi-
dence that will be addressed by the stewardship
program. We also found that eight rules targeted
patients with BMI ≥ 40. It could suggest that extend-
ed intravenous treatments are prescribed for very

severely obese patients to ensure targeted concentra-
tions are achieved. These patient profiles provide
insight into the prescribing practices of the hospital
and are of high interest for further investigation, as
they identify subgroups of patients that could
require closer monitoring or wards that could bene-
fit from targeted in-service training.

We also compared TIM to three well-known learn-
ing methods for this type of problem. Figure 13
reports their respective number of rules, computa-
tion time, precision, recall, and accuracy. The first
method used retrieval-only instance-based learning
(IBL) where every known inappropriate sequence is
used as a rule. The second method (CRL) used CN2’s
(Clark and Niblett 1989) general-to-specific search
where individual rules are created by iteratively
selecting the “best” condition. Conditions are added
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Figure 9. Example of Modified Conditions.
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Figure 10. Description of Two Real World Data Sets.
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Figure 11. Relevance Score of the 35 Extracted Rules.
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to a rule until they no longer improve its J-measure or
until every inappropriate instance is covered. The
third method used an association rule mining (ARM)
approach based on Apriori (Agrawal and Srikant
1994). Various strategies were used in CRL and ARM
to focus on highly predictive rules for the inappro-
priate class. For example, ARM used candidate prun-
ing on both support (METRO: supp ≥ 0.015; TAZO:
supp ≥ 0.02) and confidence (conf ≥ 0.75), and elimi-
nated dominated patterns (Zaki, Lesh, and Ogihara
2000). We restricted ARM to rules of size 4 for the
TAZO test.

Overall, TIM achieved relatively similar or better
recall and accuracy than CRL and IBL, except for the
recall metrics in METRO. IBL succeeded in classifying
correctly most unseen inappropriate sequences in
both tests. However, the wide coverage of its rules
also incorrectly classified several appropriate
sequences, penalizing greatly its precision and accu-
racy. In contrast, CRL achieved good accuracy on
both data sets with fewer inappropriate prescription

rules. However, they identified fewer inappropriate
sequences in both tests. TIM combines the strengths
of both previous methods. Performing a specific-to-
general search and modifying every rule in parallel
according to appropriate sequences speeds up the
process, enabling TIM to outperform CRL by up to
two orders of magnitude. TIM in addition better suc-
ceeds in identifying inappropriate sequences with
equal or higher recall, without sacrificing much accu-
racy. Furthermore, TIM harnesses the ability of CRL
to extract fewer rules than IBL. ARM performed poor-
ly, being 30 to 200 times slower than TIM and pro-
ducing many more rules, requiring heavy postpro-
cessing to identify a subset of accurate rules.

Conclusion and Future Work
In this article, we presented APSS, a clinical decision
support system that evaluates antimicrobial prescrip-
tions and produces alerts for potentially inappropri-
ate ones. Since its deployment in August 2010, APSS
has been met by prescribers and decision makers with
unanimous appreciation and recognition. We also
presented an emerging machine-learning capability
for APSS. The learning capability combines instance-
based learning and rule induction to learn prescrip-
tion classification rules from user feedback.

We discussed preliminary results demonstrating
the rule-learning capability for appropriate early
switch from intravenous to oral antimicrobial thera-
py. A majority of learned rules were found to be clin-
ically relevant because they succeeded in identifying
the clinical indications for early switch therapy. From
these rules, a clinician identified emerging patient
profiles associated with early switch recommenda-
tions providing further insight into the local pre-
scribing practices and a potential for targeted inter-
ventions (for example, unsupported use of
postoperative antimicrobial prophylaxis).

The next step is to pursue the experimentation of
the learning capability before its release in the
deployed version of APSS. Users will then be able to
utilize the learning module to explore different rule
sets and keep the rules they find clinically relevant
and accurate. Learning from imbalanced data sets,
where there are many more instances of some classes
than others, is an important issue in domains such as
ours, where inappropriate prescriptions are more the
exception than the norm. Although the preliminary
results of our algorithm seem encouraging, we have
not yet characterized the algorithm with respect to
the imbalanced data problem. This is on our agenda
for future work. Other methods of temporal data
mining could be integrated into the knowledge man-
agement tools in order to explore the vast quantity of
data that we are accumulating and identify interest-
ing patterns (that is, repetitive behaviors of interest)
that could be further investigated by the antimicro-
bial stewardship team.
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Figure 12. Conditions of a Clinically Relevant Rule.
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Figure 13. Comparison of Four Algorithms on Two Data Sets.
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In the meantime, we are in the
process of exporting APSS in other cen-
ters where we believe it will help
reduce inappropriate antimicrobial
prescribing and improve patient
health. The revision process used by
APSS could also be adapted to other
drugs since it already manages the pre-
scriptions of a patient, its vital signs,
and laboratory and microbiology test
results.
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